AkzoNobel

# TABLE OF CONTENTS

Introduction
Product platforms
Product availability
Aspects of chromatography
Application guide

# **KROMASIL**®

AkzoNobel offers Kromasil high-performance chromatographic media based on state-ofthe-art spherical silica for analytical and industrial HPLC, SFC and SMB applications. Products are available in slurry-packed columns and in bulk to fulfill laboratory and production requirements.

When the first Kromasil silica-based packing materials were introduced in 1988, they greatly improved the effectiveness of liquid chromatography. What made the new packing material so unique was the combination of high pore volume and surface area, together with excellent chemical and mechanical stability.

Today, AkzoNobel continues to be the worldclass innovator delivering also new platforms in both slurry-packed columns as well as bulk material, pushing the technological boundaries to meet user requirements.

AkzoNobel produces Kromasil in Bohus, Sweden. The production plant is an ISO 9001 facility with a manufacturing permit for 25 tons of material per year.

*Kromasil*<sup>®</sup> *is a registered trademark of AkzoNobel in a number of territories in the world.* 

### About Kromasil®

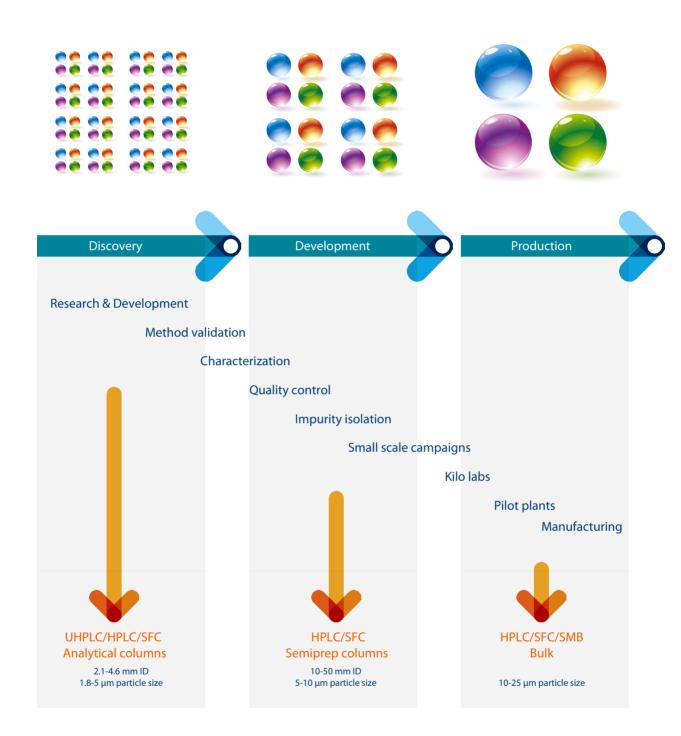
Kromasil is a high performance chromatographic media based on state-of-the-art spherical silica for UHPLC, HPLC and SFC analysis as well as production scale HPLC, SFC and SMB applications. Excellent chemical and mechanical stability result in reliability, consistency and reproducibility and thereby peace of mind for those working in chromatography.

Chromatographic analysis and purifications are ubiquitous in the pharmaceutical, natural products and API manufacturing sectors. As Kromasil is shipped in a wide range of particle sizes and formats, organizations have recognized the value of using the Kromasil brand across entire project cycles from R&D with slurry-packed columns to production with the corresponding bulk product for cost-effective solutions.

Kromasil is produced by AkzoNobel. With more than 25 years experience of stationary phase of manufacturing and packing expertise, AkzoNobel delivers performance products to customers worldwide in the pharmaceutical, food and beverage, clinical and environmental industries.

AkzoNobel has its Kromasil production plant in Bohus Sweden. The manufacturing facility is fully back integrated with probably the largest capacity for producing high quality spherical chromatographic materials in the world. Furthermore, the plant is certified according to ISO 9001 and has a manufacturing permit for 25 tons of material. All products are developed in-house and manufactured to be the perfect choice from analytical to process scale chromatography.

### Analysis


Scientists use UHPLC, HPLC and SFC columns for the separation and identification of substances in the laboratory. Challenge the selectivity of Kromasil for the most sensitive analysis.

### Development

When users need to quickly purify main compounds and remove impurities for further studies in the development of pharmaceuticals and natural products, Kromasil can help achieve isolation goals with ease and efficiency.

### Pilot scale and production

Companies using preparative HPLC, SFC and SMB for high efficiency purification in a pilot and up to industrial-scale production can rely on Kromasil as it is available in ton quantities to meet process demands.



# THE KROMASIL PRODUCT PLATFORMS

Kromasil is a brand of totally spherical silica particles for high performance chromatography usage. Kromasil products are available as bare silica and with various surface modifications for normal phase, reversed phase, chiral and supercritical fluid chromatography applications.



### kromasil **Classic**

Platform based on first-in-class silica material. Designed for the whole range from analytical through development to production scale in normal and reversed phase.



### kromasil **Eternity**

Platform based on AkzoNobel's state-of-the-art grafting technology. Designed for reversed-phase separations in potentially harsh conditions.



### kromasil **Chiral**

Platform based on AkzoNobel in-house developed silica matrix coated with a functionalized amylose or cellulose selector. Designed for analytical and industrial chiral chromatography.



# KROMASIL

*Platform specific for SFC applications. Designed for users focused on green technologies.* 

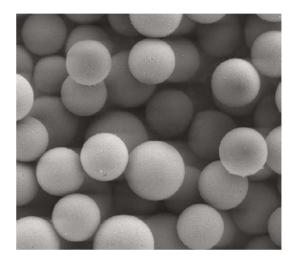


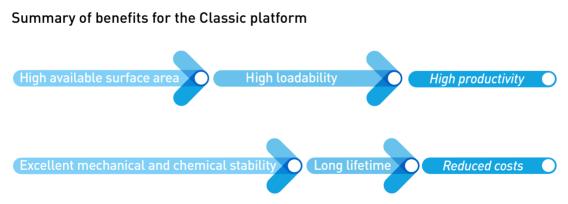
a

## KROMASIL Classic

**Beyond expectations** 

1


### The perfectly shaped silica


The Kromasil Classic platform is based on perfectly spherical silicabased materials to improve efficiency and decrease costs in laboratory analysis and purification steps.

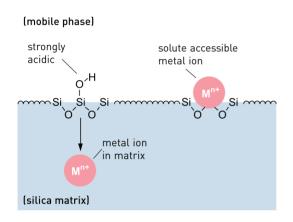
### Separates most substances

Kromasil's combination of high pore volume and surface area, together with excellent mechanical and chemical stability, is unmatched for the separation of a wide variety of substances from small molecules to peptides and proteins. The pore structure is ideal for high loadability and long-term durability, making a difference in packing and performance that users have come to appreciate over time. This acceptance is valid across the wide spectrum of the Kromasil offering, from small particles packed in analytical 2.1 mm columns to larger particles packed in wide diameter columns for purifications using dynamic axial compression (DAC) equipment.

This FE-SEM image of Kromasil 100 Å 3.5 µm particles is an illustration the consistent quality manufacturing of Kromasil stationary phase.






### Surface properties

The Kromasil surface is topographically smooth and completely free from micro cavities. The surface silanol groups are evenly distributed and relatively neutral in their nature. These factors, combined with the high reproducibility of the Kromasil silica surface, are the foundation for a reproducible bonding process and derivatized product.

### **Metal impurities**

Strongly bound metal ions present in the silica bulk and in the surface layers are in most cases an outcome of the silica manufacturing process. These metal ion species should be distinguished from adsorbed metal ion species, introduced in the final product due to use of metal ion containing solvents, chemicals etc.

It is often possible to remove adsorbed metal ion species during a regeneration process in contrast to the "built-in", strongly bound, metal ions, which are part of the final product. It is well known that strongly electronegative metal ions (e.g. bivalent iron and trivalent aluminum) in the silica matrix have the ability to enhance the acidity of silanols in their close proximity.



Increased acidity of silanols provides a higher possibility for ion-exchange interactions at any given pH. Moreover, metal ions present in the silica surface layer are able to interact directly with analytes that have Lewis-base properties.

The effect of metal ions in the silica matrix and in the silica surface layer.

The direct metal-analyte interaction is most pronounced for chelating substances, but it also affects the chromatographic behavior of acids, alcohols, and amines.

Kromasil uses a proprietary manufacturing process. The metal content in all reagents and raw materials is minimized due to a rigorous quality control procedure. The table shows information regarding the metal content in three typical batches.

|       | Batch no. |       |       |       |  |
|-------|-----------|-------|-------|-------|--|
| Metal | 15705     | 15046 | 17365 | 17892 |  |
| Na    | 2.8       | 4.2   | 6.3   | 6.1   |  |
| AL    | <1        | <1    | <1    | <1    |  |
| Fe    | 1.1       | <1    | 1.2   | <1    |  |

Metal content in ppm in four batches of Kromasil. The metal content is measured by ICP-SFMS.

### Derivatization of Kromasil silica

Even if many stationary phases are launched every year, the C18 phase is still the most popular phase on the analytical market. Extensive quality controls on every raw material together with several in process controls (IPC) throughout the Kromasil manufacturing process ensure a reproducible final quality of the derivatized phases of AkzoNobel.

### The perfectly shaped silica (cont.)

### Surface coverage

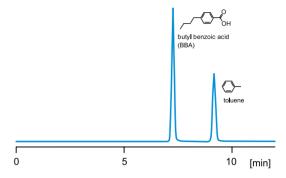
To ensure high chemical stability and excellent chromatographic performance, Kromasil is produced with an optimized bonding step for surface coverage. Kromasil RP products are manufactured by using monofunctional silanes. This together with the Kromasil silica gives outstanding batch-to-batch reproducibility and high chemical stability.

### Hydrophobicity

The hydrophobicity of an RP-phase is related to the silica matrix, the silane used for modification, the surface coverage, and the surface distribution of functionalities. Generally, Kromasil RP-phases are considered to have high surface hydrophobicity.

This high hydrophobicity has two major advantages:

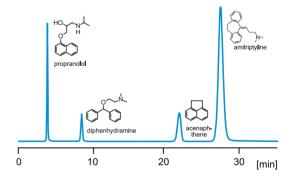
- High surface hydrophobicity provides good separating power. The retention of analytes can then be adjusted by the mobile phase conditions, upon need.
- 2. High surface hydrophobicity provides good long-lasting performance, i.e. high chemical stability.


### Endcapping

Endcapping is used to minimize undesired interactions between residual silanols and analytes. In the manufacturing process of Kromasil, a proprietary highly efficient technique is used to reduce these silanols.

### Symmetrical peaks when using Kromasil

It is well known that residual silanol groups lead to severe peak tailing due to undesired interactions between the analyte and the stationary phase. Kromasil RP-phases show excellent peak shape for both acidic and basic compounds.


### Separation of butyl benzoic acid and toluene



#### Conditions

Column: Kromasil 100-5-C18 4.6 x 250 mm Part number: M05CLA25 Mobile phase: acetonitrile / 25 mM potassium phosphate, pH 3.2 (65/35) Sample: Butyl benzoic acid and toluene Flow rate: 1.0 ml/min Temperature: 20°C Detection: UV 254 nm

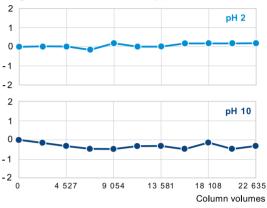
### Separation of propranolol, diphenhydramine, acenaphthene and amitriptyline.



#### Conditions

Column: Kromasil 100-5-C18 4.6 x 250 mm Part number: M05CLA25 Mobile phase: methanol / 20 mM potassium phosphate, pH 7.0 (65/35) Sample: propranolol, diphenhydramine, acenaphthene, amitriptyline Flow rate: 1.4 ml/min. Temperature: 20°C Detection: UV @ 240 nm

### **Chemical stability**


Kromasil is well known for its high performance in both analytical and preparative chromatography. Mechanical and chemical stability are the cornerstones of Kromasil, as stability determines the lifetime of columns in analysis as well as the stationary phase in purification. In general, at a low pH, bonded phases can be hydrolyzed, resulting in a less hydrophobic surface. At a higher pH, the silica matrix itself can be dissolved, which means loss of both of both the silica and bonded phase.

Working with silica-based materials outside their optimum pH conditions can result in changed retention times and poor peak shape. However, for Kromasil it has been shown that the product responds well to long-term exposure to pH 2 and pH 10.

Kromasil Classic products are available packed in columns, from 2.1 mm ID up to 50 mm ID, and as bulk, from gram quantities up to several metric tons.

With the Kromasil Classic range of products, users can run normal phase, reversed phase, hydrophilic interaction liquid chromatography, as well as supercritical fluid separations and purifications. The Kromasil Classic platform is available in the following particle sizes: 1.8, 2.5, 3.5, 5, 7, 10, 13 and 16 µm (larger particles can also be produced). Kromasil has narrow Long-term chemical stability – test under different pH conditions for a period of more than 22 000 column volumes.

Changes in retention time for toluene (%)



Conditions Column: Kromasil 100-5-C18 3.0 x 50 mm Part number: M05CLC05 Mobile phase pH 2: acetonitrile / water / triflouroacetic acid (TFA) (50/50/0.1) Mobile phase pH 10: acetonitrile / water / triethyl amine [TEA] (50/50/0.25) Flow rate: 1.0 ml/min. Temperature: 20°C Column volumes: 22 635

particle size distribution for high efficiency, low pressure drop, and best total economy in chromatographic analyses and purifications. Surface chemistries include SIL (bare silica), C4, C8, C18, Phenyl, NH2, Diol, and CN.

Within the Kromasil Classic platform, AkzoNobel offers three families of products based on pore sizes: 60, 100 and 300 Å.

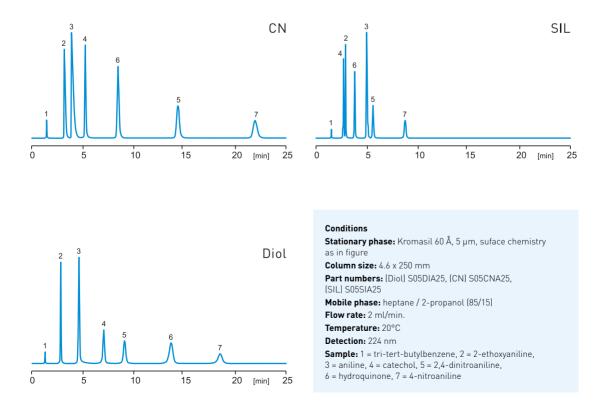
| Stages             | Discovery  | Method validation, QC | Purification         | Production       |
|--------------------|------------|-----------------------|----------------------|------------------|
| Product format     | columns    | columns               | columns/bulk media   | bulk media       |
| Scale              | UHPLC/HPLC | UHPLC/HPLC            | semipreparative HPLC | preparative HPLC |
| Column i.d. [mm]   | 2.1 - 4.6  | 2.1 - 4.6             | 10 - 50              | ≥ 50             |
| Particle size [µm] | 1.8 - 5    | 1.8 - 5               | 5 - 10               | ≥ 10             |

### Pharmaceutical and natural products project stages to launch using Kromasil

### Kromasil 60 Å

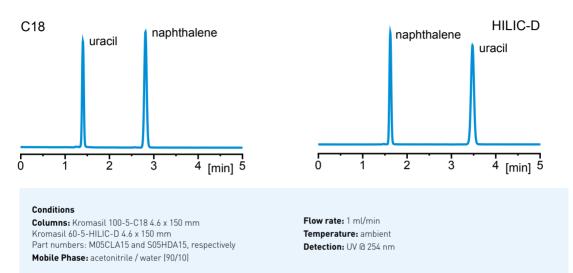
### For separation of small molecules from analytical to process scale

The Kromasil Classic 60 Å family of products is the choice for small, organic molecules when a large, accessible surface area is key for separating peaks in analysis. It also has the added properties of loadability and capacity required for purification.

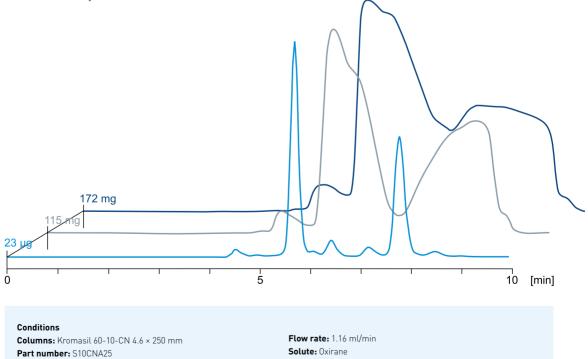

Derivatized stationary phase materials based on Kromasil 60 Å silica are developed and manufactured to give high reproducibility and chemical stability. Scientists can benefit from this range of products for applications within normal phase, reversed phase, HILIC and SFC.

### Exploit selectivity differences with Kromasil

With the wide range of derivatizations available in Kromasil, users can test sets of columns to determine which is best for a given sample. The following three chromatograms illustrate the differences in selectivity and resolution highlighted by the exposure of the same mixture of compounds to Kromasil Diol, Silica and Cyano columns.


There is an increased interest within the pharmaceutical industry for polar

compounds. Traditionally, it has been a challenge to separate polar compounds such as organic acids, nucleobases, and water soluble vitamins on standard reversed phase columns such as C18. For this reason, within Kromasil Classic 60 Å, Kromasil HILIC-D has been developed for optimal selectivity of polar compounds. This phase is also 100% MS compatible, which works well for laboratories using LC/MS technologies.



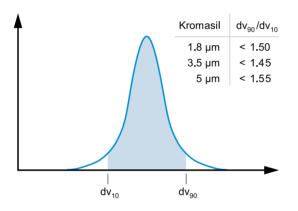

Kromasil is also recognized for its loading capacity and its benefits in the purification of compounds. The chromatogram below shows the loading of Oxirane onto a 4.6 mm ID column, traditionally regarded as a column for analysis. However, this column format allows the user to perform these types of experiments to verify the loading capability of the stationary phase and then seamlessly scale up for the final purification needs.

Chromatographic results with C18 and HILIC-D. Retention times vary due to the interactions between the substance structures and the differences in principles of reversed-phase and hydrophilic interaction chromatography. Further, with this particular mixture, selectivity reversal is achieved.



Kromasil CN (cyano) was used for the large-scale separation of a diastereomeric oxirane derivative, where the chromatograms show the scale-up experiments in analytical scale. Even at a loading corresponding to 172 mg loading in analytical scale, i.e. 86 mg crude/g of packing, 98–99% pure diastereomers could be obtained in the two collected fractions. Recovery was close to 100%.




## Kromasil 100 Å

### For small molecules and peptides

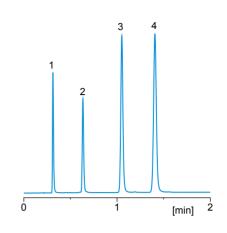
The well-known Kromasil Classic 100 Å family of products is used to separate and purify molecules of up to about 10 000 Da. In fact, drug candidates for the pharmaceutical, natural products and API industries are separated and purified using Kromasil Classic 100 Å columns and bulk material.

Derivatized products based on Kromasil 100 Å silica are developed and manufactured at AkzoNobel to achieve high reproducibility and chemical stability. The narrow and consistent particle size distribution of Kromasil 100 Å silica and its derivatizations lead to chromatographic columns with outstanding efficiency and bed stability.

### Particle size distribution showing the $dv_{00}/dv_{10}$ ratio.



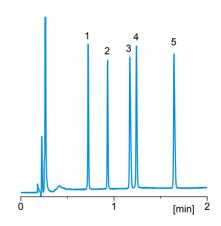
A narrow particle size distribution allows the user to avoid high backpressure due to low bed porosity. To define and secure a narrow particle size distribution, all Kromasil products have to pass stringent quality control specifications of  $dv_{90}/dv_{10}$  ratio. This specification is quite demanding on the manufacturing process, and provides a superior product compared to others in the marketplace today which only have a specification of  $dv_{90}/dv_{s0}$ .


Kromasil Classic 100 Å products are supplied for the analysis of mixtures, isolation of the main compound and impurity characterization as well as large-scale manufacturing. Slurry-packed columns are shipped in a variety of particle sizes and column formats. The same applies to bulk stationary phases.

### Kromasil in small particle sizes for UHPLC and HPLC

Kromasil is available in a variety of standard particle sizes from 1.8 to 16 µm (larger particles are available upon request). All particle sizes are based on the same Kromasil silica technology. Therefore, scientists can now employ the same quality products as their counterparts across the organization, making it easier, faster and more costeffective for a drug to reach market. Kromasil UHPLC columns with 1.8 µm particles are specifically targeted for fast chromatography to screen samples under UHPLC conditions. In this case, the chromatographic results show a separation in slightly more than a minute with significant baseline resolution.

The Kromasil 2.5 µm columns are intended for laboratory flexibility, maintaining exceptional performance. These columns are packed for UHPLC conditions giving users the option to run Kromasil 2.5 µm particle-based columns under UHPLC or HPLC conditions. Scientists can choose the scale that works best in their laboratory environment, and develop and adapt methods for fast turnaround under HPLC conditions or go one step further to UHPLC methods. As with all Kromasil particle sizes, these Kromasil 2.5 µm particles are based on very narrow specification ranges, resulting in columns with excellent performance and backed by the well-known Kromasil column-to-column reproducibility.


Kromasil allows easy transfer of methods developed on 2.5  $\mu$ m particles to other departments, such as method validation and quality control. Kromasil 2.5  $\mu$ m columns can also be a good start in open access screening by synthetic or medicinal chemists in the step before purification of key compounds of interest.



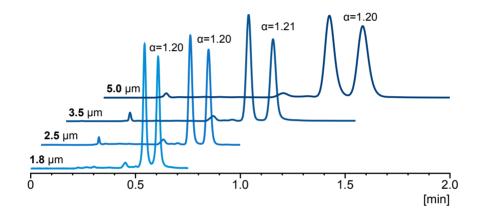
#### Conditions

Column: Kromasil 100-1.8-C18 2.1 x 50 mm Part number: MF1CLD05 Mobile phase: acetonitrile / water (65/35) Sample: 1 = dimethyl phthalate, 2 = toluene, 3 = biphenyl, 4 = phenanthrene Flow rate: 0.6 ml/min Temperature: 35°C Detection: UV @ 254 nm

### Separation within 2 minutes



#### Conditions

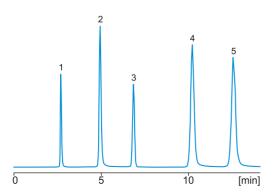

Column: Kromasil 100-2.5-C18 4.6 x 50 mm Part number: MH2CLA05 Sample: 1 = sotalol, 2 = nadolol, 3 = timolol, 4 = metoprolol, 5 = alprenolol Mobile Phase A: 0.1% TFA in acetonitrile Mobile Phase B: 0.1% TFA in water Gradient: 0 min: 5%, 2.7 min: 70% acetonitrile Flow rate: 3.0 ml/min Temperature: 50°C Detection: UV @ 230 nm

## Kromasil 100 Å (cont.)

### Seamless scalability

Considering a project starts in R&D, scientists can develop a Kromasil based UHPLC method in the early stages, validate the corresponding conditions of analysis and transfer the method to HPLC scale for other departments. Being able to use the same type of stationary phase throughout discovery, development and production is a unique opportunity for chromatographic users not only due to the extent of the Kromasil phases, but also the quality and reproducibility of the materials, which is second to none.

### Same selectivity in a fraction of the time



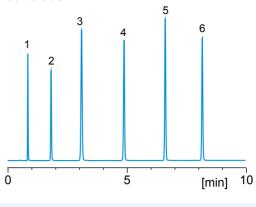

#### Conditions

Columns: Kromasil 100-1.8-C4 2.1 x 50 mm and Kromasil 100-dp-C4 4.6 x 50 mm for dp from 2.5 to 5  $\mu$ m Part numbers: MF1CSD05, MH2CSA05, MH3CSA05 and M05CSA05 Substances: Vitamin E & D Mobile phase: acetonitrile Flow rate: 5.0 μm: 1.0 ml/min, 3.5 μm: 1.5 ml/min, 2.5 μm: 2.0 ml/min, 1.8 μm: 0.6 ml/min Temperature: 20°C Detection: UV @ 215 nm

### **Kromasil for HPLC**

Kromasil Classic HPLC columns based on 5  $\mu$ m particle technology are the workhorse in analytical laboratories.




### Conditions

Column: Kromasil 100-5-C18 4.6 × 250 mm Part number: M05CLA25 Eluent: methanol / potassium phosphate, 25 mM, pH 6.0 (80/20) Flow rate: 1 ml/min Temperature: ambient Detection: UV @ 215 nm Substances: 1 = phenylpropanolamine 2 = nortriptyline 3 = toluene 4 = imipramine 5 = amitriptyline

### QC test, tricyclic antidepressants

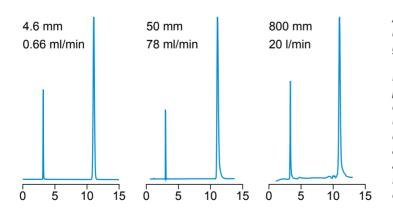
Lately, 3.5 µm particle columns are also becoming the standard for many laboratories in several sectors within pharmaceutical, food and beverage, natural products, clinical and industrial applications.

### Pesticides



Conditions

Column: Kromasil 100-3.5-C18 4.6 × 150 mm Part number: MH3CLA15 Eluent: acetonitrile/water Gradient: 0 - 1.5 min: 40%, 10 min: 90% acetonitrile Flow rate: 1.5 ml/min Temperature: 30°C Detection: UV 254 nm Substances: 1 = uracil 2 = fenuron, 3 = monuron 4 = diuron, 5 = linuron 6 = neburon


### A disruptive technology in purification

Independent of the chromatographer's need for isolation and purification, Kromasil delivers both slurry-packed columns for development and pilot laboratory isolation and bulk material for larger purifications.

One of the main distinguishing aspects of Kromasil is that it is possible to use the same quality product whatever the scale required. This comprises the isolation and purification of compounds and their impurities for carrying out material characterization, pilot runs for campaigns in the pharmaceutical industry and full production purification including the latest polishing steps for delivery to patients.

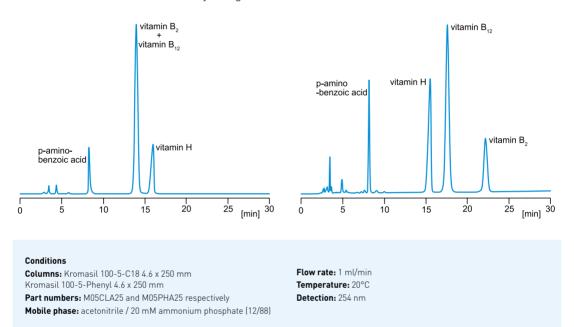
The following examples illustrate the consistency of Kromasil across column dimensions.

### Scalability

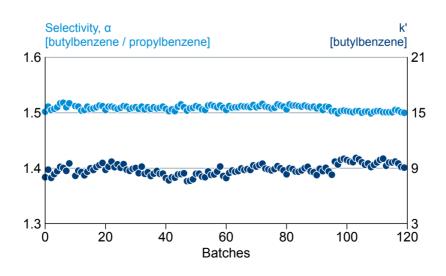


All Kromasil pre-packed columns are delivered with a minimum performance guarantee of at least 40 000 pl/m for 10 µm particles. For larger diameters DAC columns are recommended. The performance obtained in analytical columns can be maintained all the way up to very large industrial scale DAC columns, and in the example an 80 cm ID DAC column is proven to show analytical performance. The scale-up factor from the analytical column in this case is 30 000 times.

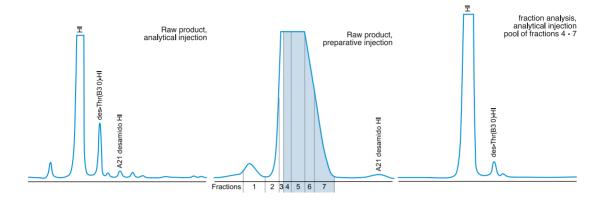
#### Conditions


Stationary phase: Kromasil 100-10-C18 Part number: M10CLblk Column size: length: 250 mm, diameter as stated in figures Sample: uracil and toluene Mobile phase: acetonitrile / water (30/70) Linear velocity: 0.66 mm/s (equivalent flow rate as stated in figures) Detection: UV 254 nm

19


## Kromasil 100 Å (cont.)

### Consistency from batch to batch


Another important aspect in preparative chromatography is the stationary phase batch-to-batch consistency. A vast number of tests are performed in the quality assurance and control of Kromasil. In the adjoining figure, batch-to-batch reproducibility of Kromasil, measured as selectivity and retention factor over time, is shown for particle sizes from 7  $\mu$ m to 16  $\mu$ m.



In cases where there is a need to use a completely wettable phase, or when the compounds in the sample have aromatic structures requiring unique selectivity for n-n interactions between the phenyl bonded phase and the solute, Kromasil Phenyl phase can be used. Kromasil Phenyl is derivatized using a mono-functional silane, followed by an extensive endcapping. The result is a stationary phase with high stability, high reproducibility, and symmetrical peaks for basic compounds.



### Example of scalability with insulin



#### Conditions

Raw product purity: 90%

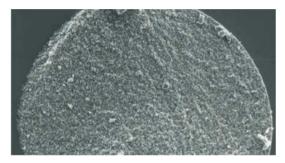
Conditions, analytical injection: Column: Kromasil 100-3.5-C4 4.6 x 120 mm Part number: MH3CSB12 Mobile phase: acetonitrile / 0.05 M sodium phosphate, 0.1 M sodium chlorate, pH 2.5 Gradient: 0 min: 30%, 55 min: 36% acetonitrile Flow rate: 1.0 ml/min Conditions, preparative injection: Packing material: Kromasil 100-10-C8

Packing material: Kromasil 100-10-DAC Column: 50 x 250 mm Loading: 6 g/l column volume Flow rate: 60 ml/min

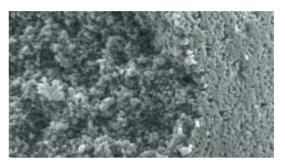
Detector: UV @ 214 nm

### The need for a strong material explained

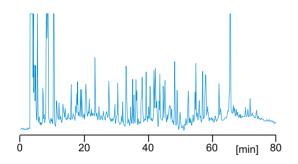
Mechanical strength is required to withstand mechanical stress in an analytical or purification column. A silica packing is also often exposed to high mechanical stress when unpacked and packed again in production. Frequent packing and unpacking requires very stable packing material where no fines can be created.


The formation of fines in any part of the process leads to increasing backpressure. Eventually the pressure limit for the system is reached, and the column has to be repacked with new material. The Kromasil particles are essentially perfectly spherical. In addition, the pore shape and structure are more regular than other materials. The result is mechanical strength that allows extremely high piston pressure in columns.

Many Kromasil customers perform cleaningin-place (CIP) using highly alkaline conditions to remove adsorbed polypeptide impurities, especially in insulin purification. Such conditions will quickly break down less stable materials mechanically. But with Kromasil, you can apply CIP over and over again.


### Kromasil 300 Å

### Protein and biomolecule separations from analytical to process scale


The Kromasil Classic 300 Å family of products is designed to be the perfect choice for proteins and biomolecules larger than 8–10 kDa. This 300 Å material has a narrow pore size distribution that ensures good mass transfer for larger molecules, resulting in narrow peaks and no size-exclusion effects. The figures below show FE-SEM studies of Kromasil 300 Å, indicating a very regular pore structure, with no voids or dense clusters.



FE-SEM picture of a cut through a Kromasil 300 Å particle at 5 000 x magnification.



FE-SEM picture of a cut through a Kromasil 300 Å particle at 35 000 x magnification, showing both the outer surface and the fracture through the particle.



### Tryptic digest of bovine serum albumin (BSA)

A common test for RP packings designed for the separation of biological materials is to run a tryptic digest of BSA. The digest contains fragments of various sizes, and the separation of these into individual peaks is good evidence of the power of resolution.

#### Conditions

Columns: Kromasil 300-5-C4 4.6 x 250 mm Part number: L05CSA25 Mobile phase A: acetonitrile / water / TFA (4/96/0.085) Mobile phase B: acetonitrile / water / TFA (90/10/0.1) Gradient: 0 min: 4%, 5 min: 4%, 80 min: 40% acetonitrile Flow rate: 1.0 ml/min Temperature: 22 °C Detection: UV @ 215 nm



### Product characteristics

### Kromasil 60 Å

#### Particle size distribution (Coulter Multisizer):

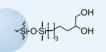
dv<sub>90</sub>/dv<sub>10</sub>: 10, 13, 16 μm <1.70 7 μm <1.60 5 µm <1.55

Chemical purity (AAS or ICP): Na <10 ppm, Al < 5 ppm, Fe < 5 ppm

SII Bare silica LISP-13 Packed density: 0.45 g/ml CN Cyano USP: L10 Coverage: 3.8 µmol/m<sup>2</sup> Element content: 12% C and 3.8% N Packed density: 0.48 g/ml



∧și-o si-{^cn


#### Specific surface area (multi-point BET): 540 m<sup>2</sup>/g Pore volume (N<sub>2</sub>-adsorption): 1.2 ml/g Pore size (N2-adsorption): 80 Å

Pore size distribution (N<sub>2</sub>-adsorption): 80% ± 15 Å

(97% of the surface is accessible for toluene, which indicates low amounts of inaccessible micro pores.)

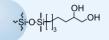
#### Diol

USP: 1 20 Coverage: 3.5 µmol/m² Element content: 10% C Packed density: 0.53 g/ml



Specific surface area (multi-point BET): 320 m<sup>2</sup>/g

Pore size distribution (N<sub>2</sub>-adsorption):  $80\% \pm 25$  Å


(97% of the surface is accessible for toluene, which indicates low

Pore volume (N\_-adsorption): 0.9 ml/g

amounts of inaccessible micro pores.]

Pore size (N,-adsorption): 110 Å

HILIC-D Diol LICD. 1 20 Coverage: 3.5 µmol/m<sup>2</sup> Element content: 10% C Packed density: 0.53 g/ml



### Kromasil 100 Å

#### Particle size distribution (Coulter Multisizer):

dv<sub>90</sub>/dv<sub>10</sub>: 10, 13, 16 μm <1.70 7 μm <1.60 5 μm <1.55 3.5 µm <1.45 2.5 µm <1.40

1.8 µm <1.50

Chemical purity (AAS or ICP): Na <10 ppm, Al < 5 ppm, Fe < 5 ppm Packed density: 0.50 g/ml

SII Bare silica USP:13 Packed density: 0.50 g/ml



C8 Octyl USP: L7 Coverage: 3.7 µmol/m<sup>2</sup> Element content: 12% C Packed density: 0.60 g/ml



C18 Octadecyl USP: L1 Coverage: 3.5 µmol/m<sup>2</sup> Element content: 20% C Packed density: 0.66 g/ml

NH2 Amino USP: L8 Coverage: 4.5 µmol/m<sup>2</sup> Element content: 1.7% N Packed density: 0.53 g/ml



Phenyl Butyl phenyl USP: 111 Coverage: 3.7 µmol/m² Element content: 14% C Packed density: 0.59 g/ml



C4 Butyl USP: L26 Coverage: 3.8 µmol/m<sup>2</sup> Element content: 8% C Packed density: 0.57 g/ml



### Kromasil 300 Å

#### Particle size distribution (Coulter Multisizer):

dv<sub>90</sub>/dv<sub>10</sub>: 10, 13, 16 μm <1.70 5 μm <1.55

Chemical purity (AAS or ICP): Na <10 ppm, Al < 5 ppm, Fe < 5 ppm

**SIL** Bare silica USP: L3 Packed density: 0.47 g/ml

∽ş̃i-OH





Specific surface area (multi-point BET): 110 m²/g Pore volume (N₂-adsorption): 0.9 ml/g Pore size (N₂-adsorption): 300 Å

Pore size distribution (N<sub>2</sub>-adsorption):  $80\% \pm 25$  Å (97% of the surface is accessible for toluene, which indicates low amounts of inaccessible micro pores.)

C8 Octyl USP: L7 Coverage: 3.8 µmol/m<sup>2</sup> Element content: 4.7% C Packed density: 0.50 g/ml

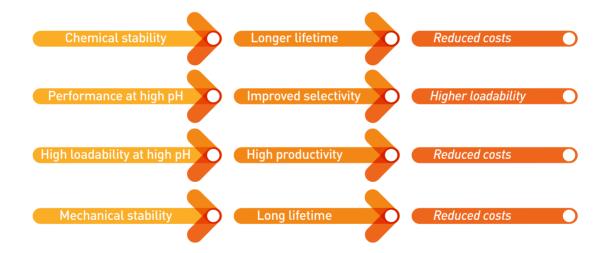
~şi·0·şi+

**C18** Octadecyl USP: L1 Coverage: 3.7 µmol/m<sup>2</sup> Element content: 8.7% C Packed density: 0.52 g/ml










## kromasil **Eternity**

Designed for long life

# Easy handling of tough demands

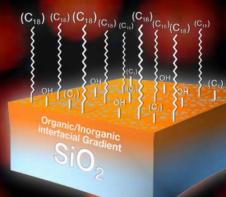
For regular silica-based stationary phases, exposure to extreme pH (especially basic) will have a negative impact on the chemical stability and therefore column lifetime. However, the silica/organosilane surface of the Kromasil Eternity platform offers a chemical stability that will secure a long-lasting stationary phase, even under tough pH conditions and higher temperatures.



### Summary of benefits for the Eternity platform

### The silica matrix

The Eternity platform is based on the Kromasil 100 Å silica matrix, well known for high mechanical stability, and a well-defined pore structure.


SiO2



### The organosilane interfacial gradient

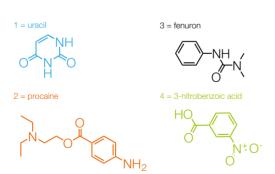
The silica matrix is bonded using a patent-pending technology. An organosilane is immobilized on the silica, and, under certain proprietary conditions merged into an organic/inorganic interfacial gradient. The pores are virtually returned to their original size, resulting in a surface exhibiting both organic and inorganic moieties. This process step has been fine-tuned to give Kromasil EternityXT its extreme chemical stability, extending the pH range and packing lifetime.

он он он Г Г Г Он



### The finished product

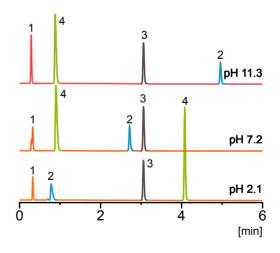
Finally the product is functionalized with various surface chemistries (C18 in illustration), followed by a proprietary endcapping process.


# Excellent performance even at high pH values

With the wide pH window, the Eternity platform gives users more flexibility to optimize selectivity and loading capacity compared to regular silica materials.

### **Optimizing resolution**

Substances with ionizable groups will exhibit significantly different retention times depending on their degree of ionization. Hence, by changing the pH, selectivity between substances can be altered so that resolution is optimized for a given separation.


In many cases, pharmaceuticals are basic. They are ionized at low or neutral pH, resulting in low retention, poor loadability and broad peaks. Being able to run at high pH means compounds become more retained with narrower peaks, revealing higher chances for better resolution and loadability.



### Running at high pH

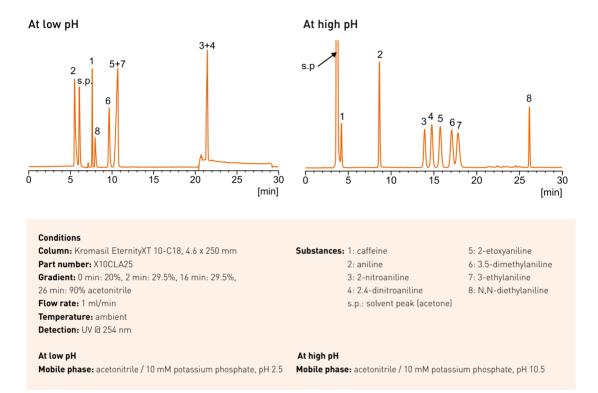
Basic pharmaceuticals become neutral at high pH and exhibit significantly sharper analytical peaks and higher loadability. Higher loadability means higher productivity, leading to a much more economical purification process. With EternityXT, largescale separations can be run for an extended time, even at levels as high as pH 12.

### Choose selectivity by tuning pH



#### Conditions

Column: Kromasil EternityXT-2.5-C18 4.6 x 50 mm Part number: XH2CLA05 Mobile phase: acetonitrile / 20 mM sodium phosphate pH 2.1, 7.2 and 11.3 Gradient 0-0.5 min: 10%, 5.5 min: 50% acetonitrile Flow rate: 1.5 ml/min Temperatur: 25°C Detection: UV@254 nm


| <b>~</b> • • |           |
|--------------|-----------|
| Substances:  | 1: uracıl |

2: procaine

3: fenuron

4: 3-nitrobenzoic acid

### Improved resolution at high pH



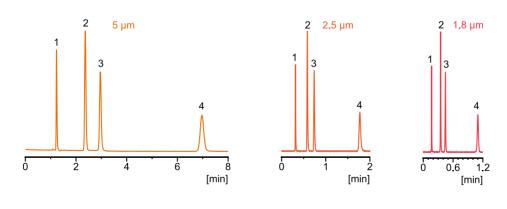
The adjoining chromatograms showing separation of anilines illustrate the significant advantage of being able to use almost the entire pH range for developing a separation method. The low pH (pH = 2.5) chromatogram shows a non-favorable situation, with coelution of two pairs of peaks. However, at high pH (pH = 10.5), a chromatogram with well separated peaks can easily be obtained.



### Stronger than ever

Kromasil EternityXT is based on the Kromasil 100 Å silica matrix, with exeptional mechanical stability as a result of the almost perfect spherical shape, combined with a proprietary process to further strengthen the matrix. In EternityXT, the new organic/inorganic platform reinforces the structure to an even higher level.

### Columns for the lab


Kromasil Eternity HPLC columns come with particles down to  $2.5 \mu m$ . EternityXT extends down to  $1.8 \mu m$  to fit any UHPLC instrument for better efficiency and flexibility in the laboratory. Both can be used for reversed-phase separations and purifications that could demand harsh conditions, fast turnaround, easy method transfer and seamless scale-up from R&D to production.

### Work fast across the board

With columns built on the Eternity platform, users can now easily develop and validate UHPLC methods for synthetic and natural products, even under tough pH conditions. Method transfer to HPLC for characterization and quality control can be made seamlessly and, if required, scaled up directly for isolation and purification. Our extensive assortment of slurry-packed columns, combined with the wide range of particle sizes from 1.8  $\mu$ m to 10  $\mu$ m for the Eternity platform, help businesses improve productivity by using one stationary phase type across the entire company.

### High efficiency with small particles

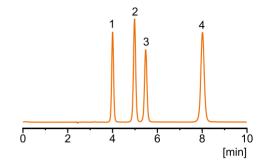
When scientists need to get results fast and within an extended pH range, EternityXT columns can help achieve the desired laboratory efficiency. With EternityXT columns you can maintain separation power across all dimensions and particle sizes. Here is an illustration of faster result turnaround with maintained resolution when using shorter columns with smaller particles.



#### Conditions

Part numbers: X05CLA15, XH2CLAH7 and XF1CLA05, respectively Stationary phase: Kromasil EternityXT, C18, particle sizes as in figures

**Column size:** 4.6 x 150 mm, 4.6 x 75 mm, 4.6 x 50 mm [respectively]


Mobile phase: acetonitrile / water/formic acid [25/75/0.1]

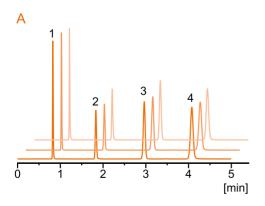
Substances: 1: uracil, 2: sulfathiazole, 3: sulfamerazin, 4: sulfamethoxazole Flow rate: 1 ml/min, 2 ml/min, 2.8 ml/min (respectively) Temperature: 25°C Detection: UV @ 254 nm

### **Alternative separations**

While C18 columns are the most commonly used for reversed-phase chromatography, PhenylHexyl is an alternative phase chemistry that provides additional interaction opportunities, especially when the analytes of interest contain an aromatic ring. Available for both Eternity and EternityXT.

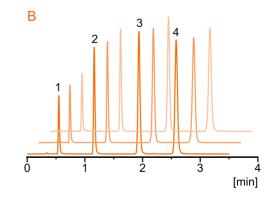
#### Separation of xanthines on Kromasil EternityXT PhenylHexyl.




### Conditions

Part number: X05PXA25

Column: Kromasil EternityXT, 5 μm, PhenylHexyl, 4.6 x 250 mm Mobile phase: acetonitrile / water/formic acid [40/60/0.1] Substances: 1: theobromine, 2: 1.7-dimethylxanthine, 3: theophylline, 4: caffeine


### Consistent results between columns and batches

Since AkzoNobel controls the entire manufacturing process of the Eternity platform, from the initial production steps of the stationary phase to the finished packed columns, batch-to-batch as well as columnto-column reproducibility is assured.

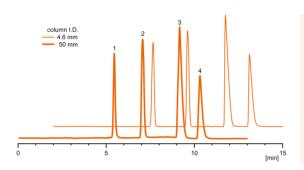


Flow rate: 1 ml/min Temperature: 30°C Detection: UV @ 254 nm

> Comparisions of three columns showing column-to-column (A) and batch-to-batch (B) reproducibility.



#### Conditions


Part numbers: XH2CLA10 and XH2CLD10 Column: Kromasil EternityXT, 2.5 µm, C18, A: 4.6 x 100 mm, B: 2.1 x 100 mm

Mobile phase: acetonitrile / water: A: [70/30], B: (65/35] Substances: 1: dimethyl phthalate, 2: toluene, 3: biphenyl, 4: phenanthrene Flow rate: A: 1.7 ml/min, B: 0.65 ml/min Temperature: A: 25°C, B: 35°C Detection: UV @ 254 nm

### Columns for the lab (cont.)

### Scale-up with ease

As it is fairly straightforward to scale HPLC up or down, having the reproducible Eternity platform phases available on a broad range of particle and column sizes gives the user the key tools to carry out method scaling efficiently.



### Loadability increases at high pH

The loadability increase that can be obtained at high pH for basic compounds is illustrated in the adjoining chromatograms, where diphenhydramine is run at pH = 3.7 and 10.5, respectively. At low pH, the molecule is ionized, leading to a large band broadening even at very low loadings. The same loading at high pH (upper right chromatogram) produces a sharp peak without any tendency to broaden as a function of concentration overload. To obtain the same band broadening at high pH, the loading has to be increased more than 160 times. Hence, loading capacity is increased by a factor >160!



#### Conditions

Column: Kromasil EternityXT-10-C18, 4.6 x 250mm Part number: X10CLA25 Flow rate: 1 ml/min Detection: UV @ 254 nm

#### Low pH, low loading Loading: 30 µg diphenhydramine

Mobile phase: acetonitrile / 25 mM ammonium format, pH 3.7 (35/65) The separation of  $\beta$ -blockers illustrates the possibility to scale up your separation developed in analytical scale to larger scale chromatography, essentially without any loss of performance. Use 4.6 mm ID or 10 mm ID columns for the method development, and use the data obtained for predicting the performance in larger scale. With dynamic axial columns (DAC) it is possible to reproduce the performance obtained in analytical columns even in very large scale.

### Conditions

Part number: X10CLA25 Column: Kromasil EternityXT 10-C18 4.6 x 250 mm Mobile phase: acetonitrile / 10 mM ammonium hydrogen carbonate, pH 10.5 Substances: 1: sotalol, 2: nadolol, 3: pindolol, 4: metoprolol Gradient: 0 min: 10%, 10 min: 90% acetonitrile Flow rate: 1 ml/min Temperature: ambient Detection: UV @ 230 nm

# Same loading PH 10.5 loading 30 µg

High pH

High pH, low loading Loading: 30 µg diphenhydramine

Mobile phase: acetonitrile / 25 mM ammonium hydrogen carbonate, pH 10.5 (70/30)

### High pH, high loading

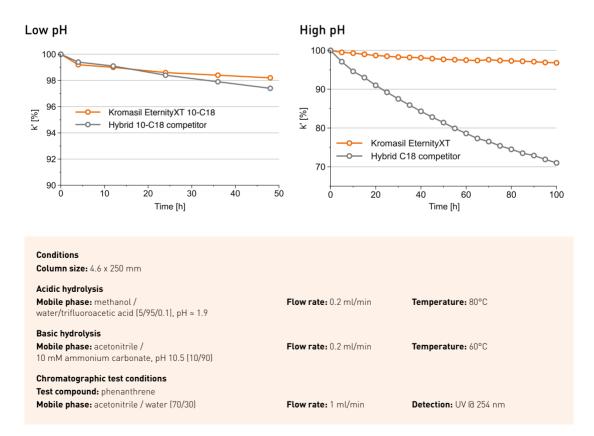
Loading: 5 mg diphenhydramine Mobile phase:

acetonitrile / 25 mM ammonium hydrogen carbonate, pH 10.5 (70/30)



### State-of-the-art stability

Traditional silica-based reversed phase materials very often have an upper limit for use at neutral to slightly basic pH. At higher pH levels, the silica matrix starts to dissolve. With Kromasil Classic RP phases this limit has been moved up to pH 9.5, and in some cases, even higher. With the Eternity platform, the boundaries are moved beyond what could be expected from the strongest silica matrix.

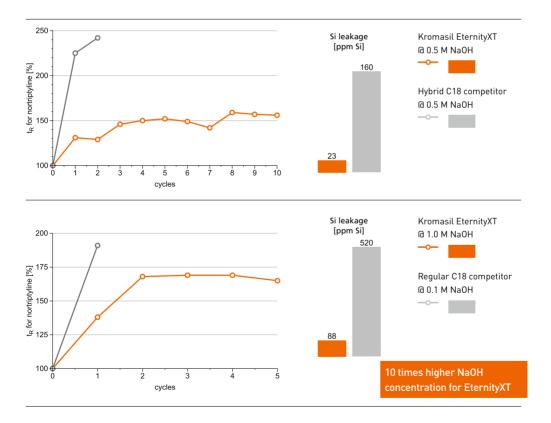

### Up to pH 12

The first generation of Eternity C18 set a new standard for column lifetime expectations for hybrid materials. With EternityXT C18, users get the flexibility to develop methods

for quick UHPLC analysis as well as isolation and large-scale purification between pH 1-12, for long-term use.

### Long-term chemical stability

In the adjoining figures the long-term chemical stability at low and high pH is shown. Low pH conditions simulate a very long-term use by applying an elevated temperature and a highly aqueous mobile phase. The hybrid materials still show excellent stability, with very low shift in k' over time. High pH conditions also include highly aqueous buffer and elevated temperature. It has been shown that carbonate buffer is especially aggressive when used with silica-based packing materials, but it has little effect on the retention factor for EternityXT, due to the very dense C18 derivatization and the EternityXT gradient, protecting the silica matrix.




#### Flexibility at your fingertips

The main proportion of all synthetic pharmaceutical APIs are basic in nature, and will exhibit an increased loadability, and hence productivity, at a high pH. Basic peptides, oligos and PNAs will also benefit from high pH separation methods. In addition, it is possible to sanitize or regenerate Kromasil EternityXT in-column (cleaning in place, or CIP) even using 1 M NaOH when necessary. 1 M NaOH is a standard in biochromatography for polymeric resins. With Kromasil EternityXT, users have the flexibility to develop analytical and separation methods for virtually the entire pH range, and to sanitize or regenerate the column using conditions previously reserved only for polymeric resins. This gives scientists the best of both worlds: highest performance and excellent stability at high pH.

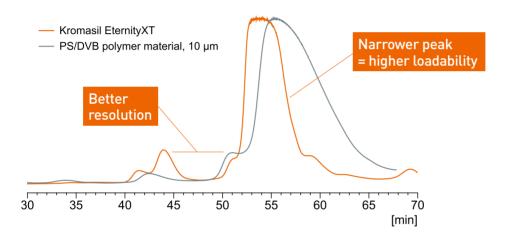
#### Chemical stability – CIP conditions

In purification of polypeptides and proteins it is common to use high pH CIP processes (cleaning-in-place) to remove irreversibly adsorbed depositions on the packing material. The figures show retention time change after a number of CIP cycles, and the leakage of silicon during the process. For 0.5 M NaOH it can be seen that the leading hybrid C18 competitor exhibits a much lower stability compared to EternityXT, both in terms of retention time change and leakage of silicon. At 1.0 M NaOH, i.e. standard cleaning conditions for polymeric materials, EternityXT still shows very high chemical stability, while a regular C18 competitor is quickly impaired already at ten times lower hydroxide concentration, i.e. 0.1 M NaOH.



#### Conditions

Column size: 4.6 x 250 mm


Mobile phase: 10 column volumes of NaOH solution / ethanol (50/50) Flow rate: 1 ml/min, for 10 column volumes (contact time 41.5 min)

#### Temperature: ambient Test compound: nortriptyline at pH 7.0

# State-of-the-art stability (cont.)

#### Chromatographic performance - EternityXT vs polymeric packing

It is well known that polystyrene/divinylbenzene (PS/DVB)-based packing materials exhibit very high chemical stability at high pH, allowing cleaning steps involving for example 1 M NaOH. However, the material can unfortunately not compete with silica-based packing materials in terms of chromatographic performance. The graph shows a typical comparison between a silica- and a polymer-based packing material: EternityXT and the market leader for PS/DVBbased packings, where identical conditions have been used. The chromatogram shows a preparative separation of insulin, where it can be seen that the silica-based material, EternityXT, has markedly sharper peaks, with roughly only 50% of the band broadening seen on the PS/DVB-based material. Both analytical efficiency and loading capacity is significantly better for EternityXT. With Kromasil EternityXT it is possible to obtain the high separation power associated with silica-based materials, and at the same time experience very high chemical stability at high pH, as can be seen in the figures.



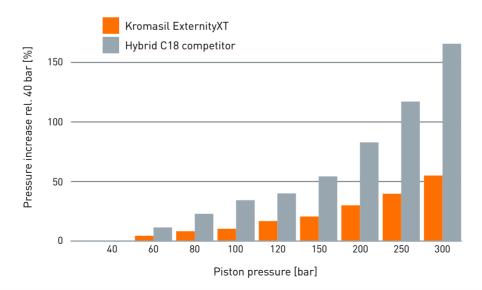
Conditions Column size: 4.6 x 250 mm Temperature: 25°C Mobile phase: ethanol / ammonium acetate 0.2 M

Flow rate: 0.7 ml/min Detection: UV @ 280 nm Gradient: for EternityXT, 0 min: 30%, 60 min: 38% ethanol for PS/DVB, 0 min: 34%, 60 min: 42% ethanol



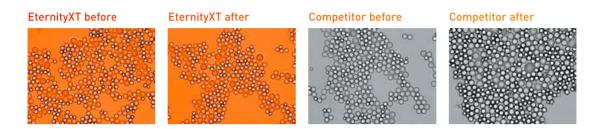
# Withstands pressure time and time again

Kromasil Classic changed the world of large-scale and industrial-scale chromatography by combining a high available surface area with great mechanical stability. Kromasil EternityXT builds upon this legacy and further enhances the performance of preparative chromatography.


#### High loading capacity

Kromasil Classic is a packing material with very high loading capacity, and hence high productivity, as it can withstand the high mechanical stress the packing is exposed to in a dynamic axial compression (DAC) column. Kromasil EternityXT is a preparative packing material with exceptional physical and chemical properties. It takes mechanical stability to the next level by exhibiting even higher mechanical stability, with the same high available surface area, and hence loading capacity.

Based on the Kromasil 100 Å silica matrix, Kromasil EternityXT has exceptional mechanical stability as a result of the spherical shape and a proprietary process that further strengthens the matrix. In EternityXT, the new organic/inorganic platform reinforces the structure to an even higher level.


#### Pressure over packed bed during mechanical stability test

To simulate a repeated packing procedure without emptying the column, a test method with a successive increase of piston pressure was applied. The back pressure increase is a measure of the degree of densification and degradation of the material after repeated packings.



#### Test conditions

The test material is packed in a 50 mm ID DAC column, and the pressure is increased stepwise, from 40 bar up to 300 bar. The backpressure is monitored during the process using ethanol as the mobile phase. The backpressure monitored during the pressure increase cycle is shown in the diagram.



#### **Key characteristics**

In addition to the physical and chemical properties of Eternity and EternityXT, it is important to know some other facts. Manufacturing starts with the silica raw material and runs all the way through to the finished packing material. Controlling the total manufacturing process means the highest quality of the final product is guaranteed. All Kromasil products are manufactured in an ISO 9001 certified facility.

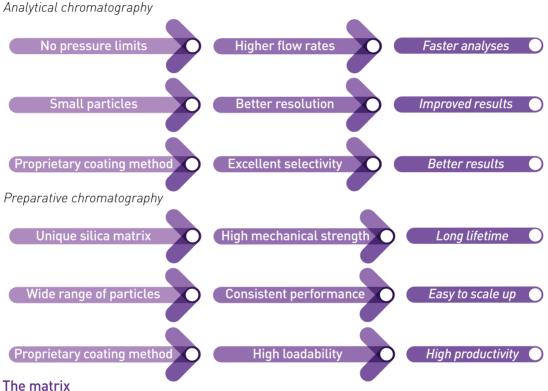
# Product characteristics

#### Availability

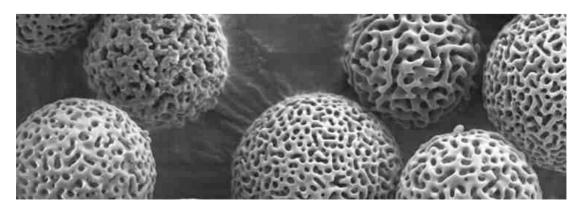
Please check the tables with part numbers in the availability part of this guide.



# kromasil Chiral


Designed to stretch the limits

# High-performing chiral phases


#### Polysaccharide-based Kromasil AmyCoat and CelluCoat stretch the limits for chiral chromatography. The silica is based on a proprietary matrix and coated with a functionalized amylose or cellulose selector.

Kromasil AmyCoat and CelluCoat give high resolution, excellent selectivity and stable performance when switching between compatible mobile phases. Users do not have to worry about pressure limits, as both Kromasil AmyCoat and CelluCoat can withstand flow rates equivalent to pressures of up to 400 bar – i.e. the limit for most standard HPLC systems.

#### Summary of benefits for the Chiral platform



Kromasil Chiral is based on super-wide pore silica particles in sizes 3, 5, 10 and 25 µm.

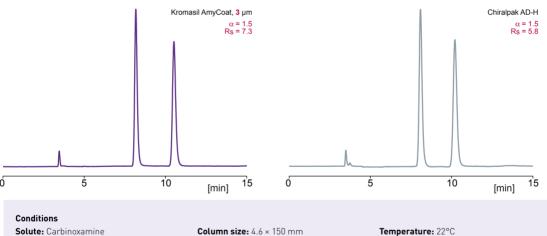




# Fast and easy method development

To speed up and simplify method development, AkzoNobel has removed some of the restrictions for coated polysaccharide phases. In analytical scale chromatography, 3  $\mu$ m particles and the absence of pressure limits allow fast chromatography with good separation results.

#### **Good results**

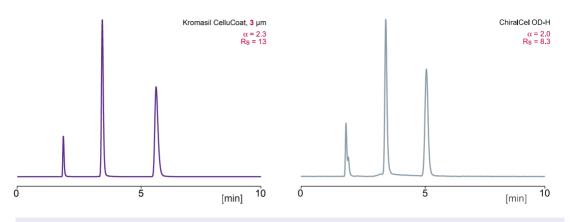

Kromasil AmyCoat and CelluCoat show excellent enantioselectivity for many racemates. In the application section of this guide, there are many chiral applications showing the performance levels scientists can expect.

By having access to 3 µm particles, higher plate count and resolution can be expected for analytical chromatography. Combined with excellent selectivity, this facilitates the separation of enantiomers.

#### Saving time

With Kromasil AmyCoat and CelluCoat, users get better results faster. Thanks to the absence of pressure limits, analytical chromatography can be run at very high flow rates and thereby save time.

#### Selectivity and resolution comparison –Kromasil AmyCoat 3 μm and Chiralpak AD-H (5 μm)

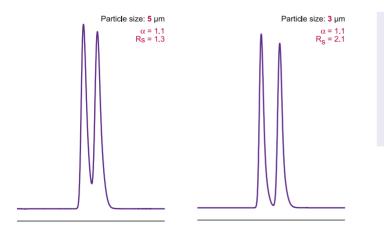



**Solute:** Carbinoxamine **Mobile phase:** Heptane / 2-Propanol / DEA (90/10/0.1) Column size: 4.6 × 150 mm Flow rate: 0.5 ml/min Temperature: 22°C Detection: UV 226 nm

|               | (            | α               | R <sub>s</sub><br>AmyCoat 3 µm Chiralpak AD-H* |     |  |  |
|---------------|--------------|-----------------|------------------------------------------------|-----|--|--|
|               | AmyCoat 3 µm | Chiralpak AD-H* |                                                |     |  |  |
| Ambucetamide  | 1.4          | 1.4             | 4.8                                            | 4.2 |  |  |
| Carbinoxamine | 1.5          | 1.5             | 7.3                                            | 5.8 |  |  |
| Ketoprofen    | 1.4          | 1.3             | 4.6                                            | 4.3 |  |  |
| Naproxen      | 1.2          | 1.2             | 3.4                                            | 3.1 |  |  |
| Oxamniquine   | 1.2          | 1.2             | 3.3                                            | 3.1 |  |  |
| Proglumide    | 2.7          | 2.8             | 11.8                                           | 9.0 |  |  |
| Sulindac      | 1.3          | 1.3             | 4.8                                            | 3.9 |  |  |

\*(5 µm)

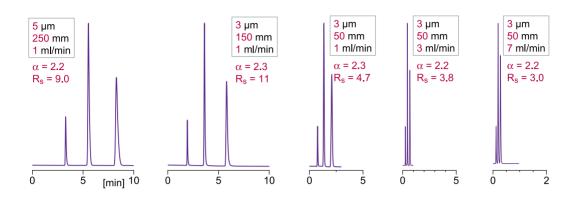
#### Selectivity and resolution comparison –Kromasil CelluCoat 3 μm and Chiralcel 0D-H (5 μm)




| Conditions                                           |                           |                      |
|------------------------------------------------------|---------------------------|----------------------|
| Solute: trans-Stilbene oxide                         | Column size: 4.6 x 150 mm | Temperature: 25°C    |
| <b>Mobile phase:</b> Heptane /<br>2-Propanol (90/10) | Flow rate: 1 ml/min       | Detection: UV 229 nm |

|                      | (              | χ               | R <sub>s</sub><br>CelluCoat 3 µm Chiralcel OD-H* |      |  |  |
|----------------------|----------------|-----------------|--------------------------------------------------|------|--|--|
|                      | CelluCoat 3 µm | Chiralcel OD-H* |                                                  |      |  |  |
| Trans-Stilbene oxide | 2.3            | 2.0             | 13.2                                             | 8.3  |  |  |
| Benzoin              | 1.5            | 1.5             | 8.6                                              | 5.7  |  |  |
| TFAE                 | 2.9            | 2.9             | 14.7                                             | 11   |  |  |
| Tröger's base        | 1.4            | 1.4             | 3.7                                              | 2.7  |  |  |
| Oxprenolol           | 5.6            | 5.5             | 18.1                                             | 15.1 |  |  |
| Naproxen             | 1.2            | 1.2             | 2.9                                              | 2.2  |  |  |
| Proglumide           | 2.0            | 2.0             | 7.6                                              | 3.2  |  |  |

\*(5 µm)


#### Difference in resolution–Kromasil AmyCoat 3 $\mu m$ vs. 5 $\mu m$



#### Conditions

Columns: Kromasil *dp* AmyCoat 4.6 x 150 mm (*dp* = 5 and 3 µm, respectively) Part number: C05ACA15 and C03ACA15 Solute: trans-2-phenyl-1-cyclohexanol Mobile phase: heptane/2-propanol (95/5) Flow rate: 1 ml/min Temperature: 25°C Detection: UV 220 nm

#### Fast analytical chromatography



#### Conditions

Columns: Kromasil dp CelluCoat 4.6 x length mm\* Part numbers: C05CCA25, C03CCA15 and

C03CCA05

Solute: trans-stilbene oxide Mobile phase: heptane/2-propanol (90/10) Temperature: 25 °C Detection: UV 229 nm  $^{\ast}$  where dp is 3 or 5  $\mu m,$  and length is 50, 150 or 250 mm, as displayed respectively in figures



# Makes everyday work so much easier

Kromasil AmyCoat and CelluCoat allow the user to perform method development without interference from restrictive parameters such as pressure limits, equilibration times and long-term performance.

#### The economy of chiral chromatography

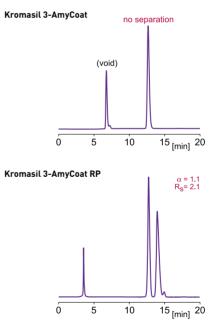
The lack of restrictions on various parameters makes method development particularly userfriendly. One well-known restriction for coated polysaccharide phases is the general pressure limit over the bed. Kromasil AmyCoat and CelluCoat withstand flow rates equivalent to pressures of up to 400 bar—which is about the limit for a standard HPLC system itself. This allows users to run chiral chromatography very fast.

#### Stable performance

When it comes to stability, Kromasil AmyCoat and CelluCoat are compatible with normal, polar organic and reversed mobile phases. Switching between compatible normal to polar organic mobile phases does not lead to any reduction in performance and there is no need for solvent dedicated columns.

#### Short equilibration times

Column equilibration is a time-consuming activity when running chiral chromatography. In general, long equilibration times are most pronounced when switching mobile phases containing basic additives to acidic additives or the other way around. The test with a Kromasil CelluCoat 3 µm column switching between two compatible mobile phases shows how short the needed equilibration times actually are.

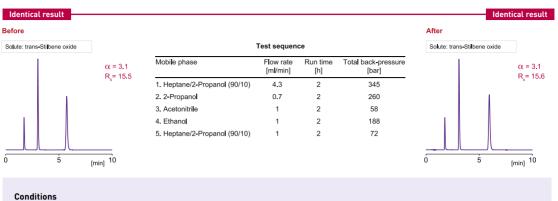

#### No memory effects

These two tests illustrate short equilibration times and additive switches for Kromasil AmyCoat and CelluCoat with absolutely no sign of memory effects.

#### Reverse phase compatibility

Many chiral separations are run under normal phase conditions. Sometimes, though, reversed-phase conditions are required to achieve separation. While it is possible to convert Kromasil AmyCoat or CelluCoat columns to run under RP-mode, it might be quicker and more efficient to use a column initially conditioned for RP-mode: Kromasil AmyCoat RP and CelluCoat RP.

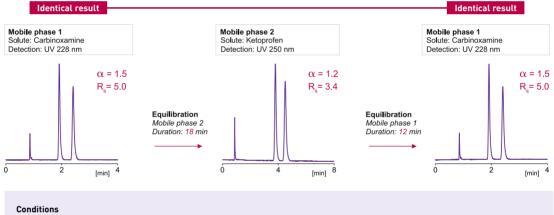
#### Extend your action range




#### Conditions

NP column: Kromasil 3-AmyCoat 4.6 x 150 mm RP column: Kromasil 3-AmyCoat RP 4.6 x 150 mm Part numbers: C03ACA15 and C03ARA15, respectively NP mobile phase: heptane / 2-propanol (90/10) RP mobile phase: acetonitrile / water (40/60) Solute: 2-phenyl-2-butanol Flow rates: 0.25 ml/min and 0.5 ml/min, respectively

Temperature: 22 °C Detection: UV @ 210 nm and 254 nm, respectively


#### Stable performance - No pressure limits - Freedom to switch solvents



Column: Kromasil 3-AmyCoat 4.6 × 150 mm Part number: C03ACA15

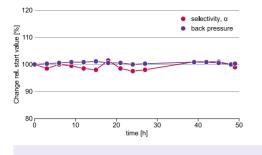
Temperature: 25 °C Detection: UV 229 nm

#### Short equilibration times - Freedom to switch additives



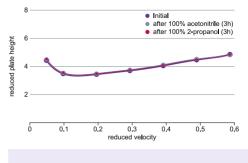
Column: Kromasil 3-AmyCoat 4.6 x 150 mm Part number: C03ACA15

#### Mobile phase 1:


heptane / 2-propanol/DEA (90/10/0.1) Mobile phase 2: heptane / 2-propanol/TFA (90/10/0.1)

Sample 1/2: carbinoxamine / ketoprofen Flow rate: 2 ml/min Temperature: 25 °C Detection 1/2: UV @ 228 nm / UV @ 250 nm

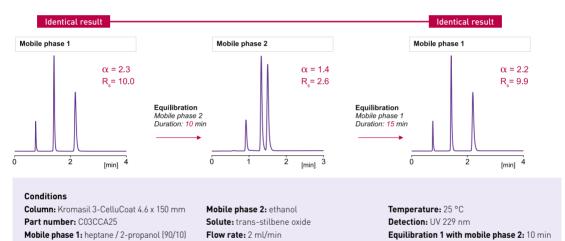



Mobile phase: heptane / 2-propanol (90/10) Flow rate: 1 ml/min

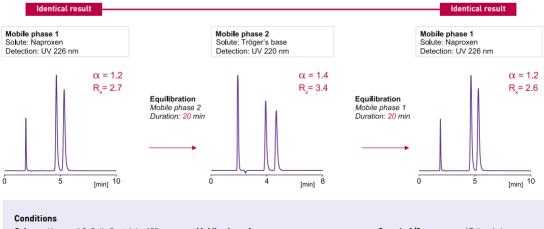
#### Stable performance - No pressure limits - Freedom to switch solvents



#### Conditions


Column: Kromasil 3-CelluCoat 4.6 x 50 mm Part number: C03CCA05 Mobile phase: heptane/2-propanol (90/10) Solute: trans-stilbene oxide Flow rate: 7 ml/min Temperature: 25 °C




#### Conditions

Column: Kromasil 5-CelluCoat 4.6 x 250 mm Part number: C05CCA25 Mobile phase: heptane / 2-propanol (90/10) Solute: trans-stilbene oxide Flow rates: 0.1-1.2 ml/min Temperature: 25 °C

#### Short equilibration times - Freedom to switch solvents

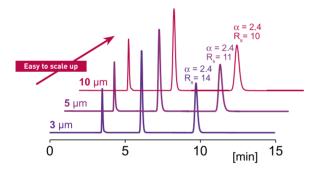


#### Short equilibration times - Freedom to switch additives

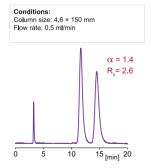


Column: Kromasil 3-CelluCoat 4.6 x 150 mm Part number: C03CCA15 Mobile phase 1: heptane / 2-propanol/TFA (90/10/0.1) Mobile phase 2: heptane / 2-propanol/DEA (90/10/0.1) Sample 1/2: naproxene / Tröger's base Flow rate: 1 ml/min Temperature: 25 °C Detection 1/2: UV @ 226 nm / UV @ 220 nm

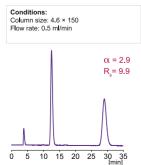
Equilibration 2 with mobile phase 1: 15 min

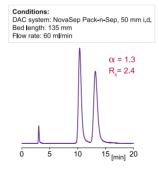

# Works all the way

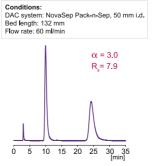
Kromasil products are well known for their ability to work along the whole spectrum from analytical to industrial scale chromatography. Kromasil AmyCoat and CelluCoat are no exception.


#### Simplifies method development

With particle sizes from 3 µm to 25 µm giving identical selectivity, Kromasil AmyCoat and CelluCoat make it easy to scale up while retaining excellent performance. As for all Kromasil products, the user can perform the required method development in analytical scale columns and then scale up to a larger


Easy to scale up





#### Kromasil AmyCoat



#### Kromasil CelluCoat







column. For example, 3  $\mu$ m particles in an analytical scale column can be scaled to a larger column packed with 10  $\mu$ m particles. If the initial goal is to scale up the process, an analytical column packed with 10  $\mu$ m particles can be used right from the start.

#### Conditions

Columns: Kromasil *dp* CelluCoat, 4.6 × 150 mm, where *dp* = 3, 5 and 10 µm, respectively Part numbers: C03CCA15, C05CCA15 and C10CCA15 Mobile phase: heptane/2-propanol (90/10) Solute: trans-stilbene oxide Flow rate: 0.5 ml/min Temperature: 25 °C Detection: UV @ 229 nm

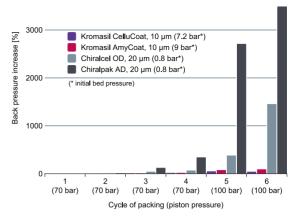
#### Conditions

Stationary phase: Kromasil AmyCoat, 10 μm Mobile phase: heptane/2-propanol (90/10) Solute: trifluoro-anthrylethanol Temperature: 20 °C Detection: UV @ 254 nm

Analytical conditions Column size: 4.6 × 150 mm Part number: C10ACA15 Flow rate: 0.5 ml/min Prep conditions

DAC system: NovaSep Pack-n-Sep, 50 mm i.d. Bed length: 135 mm Flow rate: 60 ml/min

#### Conditions


Stationary phase: Kromasil CelluCoat, 10 µm Mobile phase: heptane/2-propanol (90/10) Solute: trifluoro-anthrylethanol Temperature: 20 °C Detection: UV @ 254 nm

Analytical conditions Column size: 4.6 × 150 mm Part number C10CCA15 Flow rate: 0.5 ml/min Prep conditions

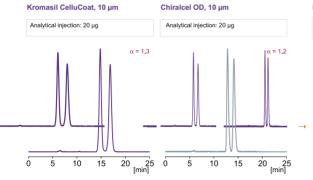
DAC system: NovaSep Pack-n-Sep, 50 mm i.d. Bed length: 132 mm Flow rate: 60 ml/min

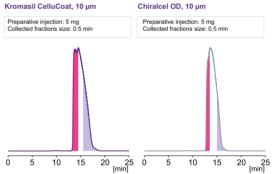
#### Mechanically strong

Mechanical strength is an important product lifetime parameter. Kromasil AmyCoat and CelluCoat have mechanically strong spherical silica, which withstands repeated cycles of packing. The test was designed to exert greater than normal mechanical stress on the chiral stationary phases, and is performed at a packing pressure above the maximum 50 bar recommended by the manufacturer of Chiralcel OD and Chiralpak AD.



The relative backpressure increase is a measure of the degree of degradation of the material after repeated packings. Actual particle size for Chiralcel and Chiralpak is about three times larger than that for Kromasil, which explains the difference in initial backpressure (backpressure is inversely proportional to the square of the particle size).


#### Fully back-integrated


AkzoNobel manufactures the super wide pore silica for Kromasil polysaccharide products and performs all subsequent steps leading to the final product. All products are fully traceable.

Every manufacturing step is ensured through AkzoNobel's detailed quality system, and

the final product is never released until it has passed a rigorous quality control test sequence.

See the application part of this guide for examples of preparative applications of Kromasil AmyCoat and CelluCoat.



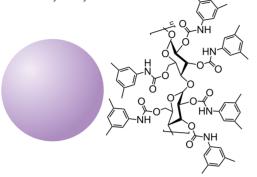


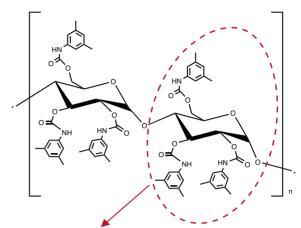
| Purity and | Yield | from | fraction | analysis: |
|------------|-------|------|----------|-----------|
|            |       |      |          |           |

|                     | Enanti        | omer 1       | Enantiomer 2  |              |  |
|---------------------|---------------|--------------|---------------|--------------|--|
|                     | Purity<br>[%] | Yield<br>[%] | Purity<br>[%] | Yield<br>[%] |  |
| Kromasil CelluCoat  | 91.2          | 73.3         | 94.4          | 50.1         |  |
| Daicel Chiralcel OD | 91.4          | 46.7         | 96.6          | 24.9         |  |

#### Conditions

Columns: Kromasil 10-CelloCoat 4.6 x 250 mm and Daicel Chiralcel OD (10 µm) 4.6 x 250 mm, respectively Mobile phase: heptane / 2-propanol/TFA (90/10/0.1) Sample: Naproxen Flow rate: 0.5 ml/min Temperature: 25 °C Analytical conditions Sample load: 20 µg

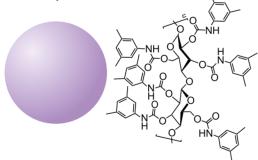

Preparative conditions Sample load: 5 mg fraction size: 0.5 min

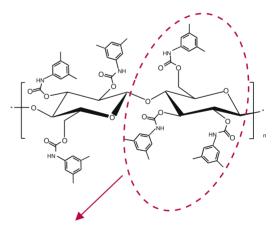

# Product characteristics

#### **Chiral selector**

#### Kromasil AmyCoat and AmyCoat RP

The coated selector is tris-(3.5-dimethylphenyl) carbamoyl amylose.




tris-(3.5-dimethylphenyl)carbamoyl amylose

#### Kromasil CelluCoat and CelluCoat RP

The coated selector is tris (3.5-dimethylphenyl) carbamoyl cellulose.





tris-(3.5-dimethylphenyl)carbamoyl cellulose

#### Compatible mobile phases

#### Kromasil AmyCoat and CelluCoat

| alkane/2-propanol              | 100/0 to 0/100 |
|--------------------------------|----------------|
| alkane/ethanol                 | 100/0 to 0/100 |
| alkane/methanol                | 100/0 to 0/100 |
| alkane/MTBE                    | 100/0 to 50/50 |
| ethanol/methanol               | 100/0 to 0/100 |
| (SFC) CO <sub>2</sub> /alcohol | 100/0 to 50/50 |

#### Kromasil AmyCoat only

| acetonitrile/methanol   | 0/100 to 15/85<br>85/15 to 100/0 |
|-------------------------|----------------------------------|
| acetonitrile/2-propanol | 100/0 to 0/100                   |
| ethanol/MTBE            | 100/0 to 70/30                   |

#### Kromasil CelluCoat only

| acetonitrile/methanol | 85/15 to 100/0 |
|-----------------------|----------------|
| ethanol/MTBE          | 100/0 to 50/50 |

#### Kromasil AmyCoat RP and CelluCoat RP

| Aqueous solution                                                                             | Organic modifiers                                     | Organic part | Temperature                      |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------|----------------------------------|
| acetic acid, 0.1%                                                                            |                                                       | 10-100 %     | 5-40°C                           |
| potassium phosphate buffer<br>0-0.5 M, pH 2.0-8.0<br>(i.e. 50 mM at pH 2.0, 20 mM at pH 8.0) | For all listed<br>aqueous solutions:<br>acetonitrile, | 10-85%       | рН < 7: 5-40°С<br>рН > 7: 5-25°С |
| phosphoric acid, aq. sol. at pH 2.0                                                          | methanol,                                             | as above     | as above                         |
| sodium hexafluorophosphate aq. sol.<br>(i.e. 100 mM at pH 2.0, 50 mM at pH 5.0)              | ethanol,<br>2-propanol                                | as above     | as above                         |
| sodium borate buffer<br>0-0.2 M, pH 7.5-9.0 (i.e. 20 mM at pH 9.0)                           |                                                       | as above     | 5-25°C                           |
| water                                                                                        |                                                       | 10-100 %     | 5-40°C                           |

#### Availability

Please check the tables with part numbers in the availability part of this guide.



# KROMASIL SFC

Designed for green technology

# Columns for efficient SFC

Through the years, Kromasil has become the first choice for SFC separations for reliability and reproducibility. Kromasil SFC is built upon this legacy.

#### The natural choice

Briefly, carbon dioxide is the main component of the SFC mobile carrier, which can be accompanied by small percentages of modifiers such as methanol. The use of mostly carbon dioxide is seen as an environmentally sound approach. It is also a way to reduce operating costs in the laboratory as the cost of carbon dioxide is significantly lower than acetonitrile or methanol.

In addition, due to the physics involved, SFC is a tool for quick sample turnaround. This is especially true when moving to drug development and production, where the user can minimize eluent evaporation time in the fractions collected, increasing overall productivity in the laboratory and manufacturing. Based on Kromasil silica particles, the Kromasil superficial fluid chromatography (SFC) platform is a set of columns that meets the increased interest for green technologies and sustainable solutions in the laboratory.






# Analytical SFC columns

Based on 100 Å pore size and 2.5  $\mu$ m particles, Kromasil SFC gives users fast separations. The columns are tailor-made for research, discovery and routine analysis.

#### Many options

Kromasil SFC columns are delivered in cyano, diol, silica, and 2-ethylpyridine chemistries for the laboratory scientist to separate and analyze a wide range of substances, from non-polar to strongly polar compounds.

#### The stationary phase quartet

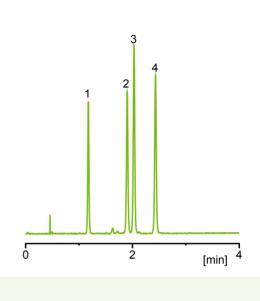


#### Separation of -blockers

By using this standard set of Kromasil SFC columns, the user can efficiently screen the material that works best for a given sample.

#### Conditions

Stationary phase: Kromasil SFC, 2.5 μm phase chemistry as in figure Part numbers: FH2SIC15, FH2CNC15, FH2DIC15, FH2EPC15 Column size: 3.0 x 150 mm Eluent: CO<sub>2</sub> / methanol + 20 mM ammonia Gradient: 0 min: 5%, 10 min: 30% methanol Flow rate: 2 ml/min


Substances: 1 = alprenolol 2 = propranolol 3 = acebutolol 4 = pindolol Temperature: 40°C Outlet pressure: 120 bar Detection: ES-MS and UV @ 220 nm

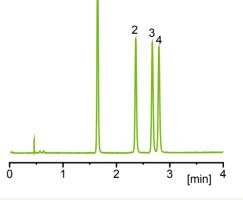
#### **Fast separations**

Medium and high throughput laboratories working with green technology and seeking to improve turnaround time can take advantage of the separation power of the Kromasil SFC 2.5 µm family of columns.

#### Separation of steroids

With the chromatographic power of Kromasil SFC cyano phase users can easily achieve baseline resolution within 2.5 minutes of a generic linear gradient.




Conditions Stationary phase: Kromasil SFC, 2.5 µm, CN, 3.0 x 150 mm

Part number: FH2CNC15 Eluent: CO<sub>2</sub> / methanol Gradient: 0 min: 5%, 10 min: 30% methanol Flow rate: 2 ml/min Substances: 1 = deoxycorticosterone 2 = corticosterone 3 = cortisone 4 = hydrocortisone Temperature: 40°C Outlet pressure: 120 bar Detection: ES-MS and UV @ 220 nm

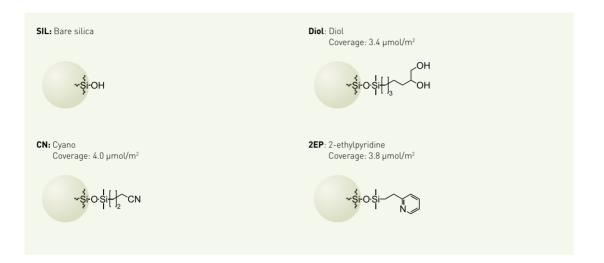
#### **Selectivity for SFC**

#### Separation of anti-inflammatory drugs

With its endcapping and aromatic properties, Kromasil SFC with 2-ethylpyridine offers a unique separation power that makes it standout from the rest.



#### Conditions


Column: Kromasil SFC,  $2.5 \ \mu$ m, 2EP,  $3.0 \ x$  150 mm Part numbers: FH2EPC15 Eluent:  $CO_2 / methanol$ Gradient: 0 min: 5%, 10 min: 30% methanol Flow rate: 2 ml/min Substances: 1 = ibuprofen 2 = fenoprofen 3 = flurbiprofen 4 = ketoprofen Temperature: 40°C Outlet pressure: 120 bar Detection: ES-MS and UV @ 220 nm

Note: Application results and chromatograms in this SFC section are courtesy of AstraZeneca, Mölndal, Sweden.

# Product characteristics

#### **Characteristics**

Kromasil SFC is based on a porous silica particle with 100 Å pore size and 2.5  $\mu m$  particle size.





#### Availability

Please check the tables with part numbers in the availability of this guide.



# THE KROMASIL PRODUCT AVAILABILITY

Product codes for Kromasil bulk media and columns are given in the tables of this chapter. Listed are items that are believed to be the most interesting to users. Other column combinations not listed here may be available or packed upon request. Contact AkzoNobel offices or the local distributor for enquiries.

## Kromasil

# Ordering Kromasil products

#### Contact info

#### AkzoNobel Pulp and Performance Chemicals

Separation Products, SE-445 80 Bohus, Sweden. Tel +46 31 58 70 00, Fax +46 31 58 77 27

#### China:

#### AkzoNobel

22F, Eco City, No. 1788 West Nanjing Road, Jingan District Shanghai 200040, P. R. China Tel +86 21 2220 5000 ext.5727, 5729 Tel +86 21 2220 5729 (direct) Fax +86 21 2220 5558

#### India:

#### Akzo Nobel India Ltd AkzoNobel Pulp and Performance Chemicals

Separation Products, 2<sup>nd</sup> Floor, R&T Centre, Plot 1/1, TTC Industrial Area, Thane-Belapur Road, Kopar Khairane Navi Mumbai - 400 709, India Tel +91 22 2778 7338 Fax +91 22 2778 7380

Page

#### NAFTA countries:

#### AkzoNobel

281 Fields Lane, Brewster, NY 10509, U S A. Tel +1 845 276 8223 Fax +1 845 277 1406

By e-mail: kromasil@akzonobel.com



Find a local
distributor online:

www.kromasil.com/distributor\_network/

#### Availability tables

Kromasil bulk media Kromasil Classic columns Kromasil Eternity columns Kromasil Chiral columns Kromasil SFC columns





## Kremasil

## Kromasil bulk media for HPLC, SFC and SMB

#### Availability for Kromasil bulk media

|            | Particle size, [µm] |          |          |   |          |          |          |          |          |          |          |
|------------|---------------------|----------|----------|---|----------|----------|----------|----------|----------|----------|----------|
| Family     | Phase               | 1.8      | 2.5      | 3 | 3.5      | 5        | 7        | 10       | 13       | 16       | 25       |
| 60 Å       | SIL                 |          |          |   |          | S05SIblk | S07Slblk | S10Slblk | S13SIblk | S16SIblk |          |
| 60 Å       | CN                  |          |          |   |          | •        |          | S10CNblk |          | S16CNblk |          |
| 60 Å       | Diol                |          |          |   |          | •        |          | S10Dlblk |          |          |          |
| 60 Å       | HILIC-D             |          |          |   |          | •        |          | S10HDblk |          |          |          |
| 100 Å      | SIL                 | MF1Slblk | MH2SIblk |   | MH3Slblk | M05Slblk | M07Slblk | M10Slblk | M13Slblk | M16Slblk |          |
| 100 Å      | C1                  |          |          |   |          | •        |          |          |          |          |          |
| 100 Å      | C4                  | •        | •        |   | •        | •        | M07CSblk | M10CSblk | M13CSblk | M16CSblk |          |
| 100 Å      | C8                  | ٠        | •        |   | ٠        | ٠        | M07CMblk | M10CMblk | M13CMblk | M16CMblk |          |
| 100 Å      | C18                 | •        | •        |   | •        | •        | M07CLblk | M10CLblk | M13CLblk | M16CLblk |          |
| 100 Å      | NH2                 |          |          |   | ٠        | ٠        | M07NHblk | M10NHblk | M13NHblk | M16NHblk |          |
| 100 Å      | Phenyl              |          |          |   |          | •        |          | M10PHblk |          | M16PHblk |          |
| 300 Å      | SIL                 |          |          |   |          | L05SIblk |          | L10Slblk |          | L16SIblk |          |
| 300 Å      | C4                  |          |          |   |          | •        |          | L10CSblk |          | L16CSblk |          |
| 300 Å      | C8                  |          |          |   |          | ٠        |          | L10CMblk |          | L16CMblk |          |
| 300 Å      | C18                 |          |          |   |          | ٠        |          | L10CLblk |          | L16CLblk |          |
| Eternity   | C18                 |          | •        |   |          | ٠        |          |          |          |          |          |
| Eternity   | PhenylHexyl         |          | •        |   |          | ٠        |          |          |          |          |          |
| EternityXT | C18                 | •        | •        |   |          | •        |          | X10CLblk |          |          |          |
| EternityXT | PhenylHexyl         | •        | •        |   |          | ٠        |          |          |          |          |          |
| Chiral     | AmyCoat             |          |          | • |          | •        |          | C10ACblk |          |          | C25ACblk |
| Chiral     | AmyCoat RP          |          |          |   |          | •        |          |          |          |          |          |
| Chiral     | CelluCoat           |          |          |   |          | •        |          | C10CCblk |          |          | C25CCblk |
| Chiral     | CelluCoat RP        |          |          | • |          | ٠        |          |          |          |          |          |
| SFC        | CN                  |          | •        |   |          |          |          |          |          |          |          |
| SFC        | Diol                |          | •        |   |          |          |          |          |          |          |          |
| SFC        | 2EP                 |          | •        |   |          |          |          |          |          |          |          |
| SFC        | SIL                 |          | FH2SIblk |   |          |          |          |          |          |          |          |

• : analytical product, only available in slurry-packed columns

## Kromasil Classic columns for UHPLC and HPLC

|        |         |                       |          | column size, i.d. × length [mm] |           |           |  |
|--------|---------|-----------------------|----------|---------------------------------|-----------|-----------|--|
| Family | Phase   | particle<br>size [µm] | 2.1 × 33 | 2.1 × 50                        | 2.1 × 100 | 2.1 × 150 |  |
| 60Å    | SIL     | 5                     |          | S05SID05                        | S05SID10  | S05SID15  |  |
| 60Å    | CN      | 5                     |          | S05CND05                        | S05CND10  | S05CND15  |  |
| 60Å    | Diol    | 5                     |          | S05DID05                        | S05DID10  | S05DID15  |  |
| 60Å    | HILIC-D | 5                     |          | S05HDD05                        | S05HDD10  | S05HDD15  |  |
| 100Å   | SIL     | 3.5                   |          | MH3SID05                        | MH3SID10  | MH3SID15  |  |
| 100Å   | SIL     | 5                     |          | M05SID05                        | M05SID10  | M05SID15  |  |
| 100Å   | C4      | 1.8                   |          | MF1CSD05                        | MF1CSD10  |           |  |
| 100Å   | C4      | 2.5                   |          | MH2CSD05                        | MH2CSD10  |           |  |
| 100Å   | C4      | 3.5                   |          | MH3CSD05                        | MH3CSD10  | MH3CSD15  |  |
| 100Å   | C4      | 5                     |          | M05CSD05                        | M05CSD10  | M05CSD15  |  |
| 100Å   | C8      | 1.8                   |          | MF1CMD05                        | MF1CMD10  |           |  |
| 100Å   | C8      | 2.5                   |          | MH2CMD05                        | MH2CMD10  |           |  |
| 100Å   | C8      | 3.5                   |          | MH3CMD05                        | MH3CMD10  | MH3CMD15  |  |
| 100Å   | C8      | 5                     |          | M05CMD05                        | M05CMD10  | M05CMD15  |  |
| 100Å   | C18     | 1.8                   |          | MF1CLD05                        | MF1CLD10  |           |  |
| 100Å   | C18     | 2.5                   |          | MH2CLD05                        | MH2CLD10  |           |  |
| 100Å   | C18     | 3.5                   |          | MH3CLD05                        | MH3CLD10  | MH3CLD15  |  |
| 100Å   | C18     | 5                     |          | M05CLD05                        | M05CLD10  | M05CLD15  |  |
| 100Å   | NH2     | 3.5                   |          | MH3NHD05                        | MH3NHD10  | MH3NHD15  |  |
| 100Å   | NH2     | 5                     |          | M05NHD05                        | M05NHD10  | M05NHD15  |  |
| 100Å   | Phenyl  | 5                     |          | M05PHD05                        | M05PHD10  | M05PHD15  |  |
| 300Å   | SIL     | 5                     | L05SIDT3 | L05SID05                        | L05SID10  | L05SID15  |  |
| 300Å   | C4      | 5                     |          | L05CSD05                        | L05CSD10  | L05CSD15  |  |
| 300Å   | C8      | 5                     |          | L05CMD05                        | L05CMD10  | L05CMD15  |  |
| 300Å   | C18     | 5                     |          | L05CLD05                        | L05CLD10  | L05CLD15  |  |
|        |         |                       |          |                                 |           |           |  |

#### Kromasil Classic, 2.1 mm i.d. columns



|        |         |                       | column size, i.d. × length [mm] |           |           |           |           |
|--------|---------|-----------------------|---------------------------------|-----------|-----------|-----------|-----------|
| Family | Phase   | particle<br>size [µm] | 3.0 × 50                        | 3.0 × 100 | 3.0 × 125 | 3.0 × 150 | 3.0 × 250 |
| 60Å    | SIL     | 5                     | S05SIC05                        | S05SIC10  |           | S05SIC15  |           |
| 60Å    | CN      | 5                     | S05CNC05                        | S05CNC10  |           | S05CNC15  |           |
| 60Å    | Diol    | 5                     | S05DIC05                        | S05DIC10  |           | S05DIC15  |           |
| 60Å    | HILIC-D | 5                     | S05HDC05                        | S05HDC10  |           | S05HDC15  |           |
| 100Å   | SIL     | 3.5                   | MH3SIC05                        | MH3SIC10  |           | MH3SIC15  |           |
| 100Å   | SIL     | 5                     | M05SIC05                        | M05SIC10  |           | M05SIC15  |           |
| 100Å   | C4      | 1.8                   | MF1CSC05                        | MF1CSC10  |           |           |           |
| 100Å   | C4      | 2.5                   | MH2CSC05                        | MH2CSC10  |           |           |           |
| 100Å   | C4      | 3.5                   | MH3CSC05                        | MH3CSC10  |           | MH3CSC15  |           |
| 100Å   | C4      | 5                     | M05CSC05                        | M05CSC10  |           | M05CSC15  |           |
| 100Å   | C8      | 1.8                   | MF1CMC05                        | MF1CMC10  |           |           |           |
| 100Å   | C8      | 2.5                   | MH2CMC05                        | MH2CMC10  |           |           |           |
| 100Å   | C8      | 3.5                   | MH3CMC05                        | MH3CMC10  |           | MH3CMC15  |           |
| 100Å   | C8      | 5                     | M05CMC05                        | M05CMC10  |           | M05CMC15  |           |
| 100Å   | C18     | 1.8                   | MF1CLC05                        | MF1CLC10  |           |           |           |
| 100Å   | C18     | 2.5                   | MH2CLC05                        | MH2CLC10  |           |           |           |
| 100Å   | C18     | 3.5                   | MH3CLC05                        | MH3CLC10  | MH3CLC1F  | MH3CLC15  | MH3CLC25  |
| 100Å   | C18     | 5                     | M05CLC05                        | M05CLC10  | M05CLC1F  | M05CLC15  | M05CLC25  |
| 100Å   | NH2     | 3.5                   | MH3NHC05                        | MH3NHC10  |           | MH3NHC15  |           |
| 100Å   | NH2     | 5                     | M05NHC05                        | M05NHC10  |           | M05NHC15  |           |
| 100Å   | Phenyl  | 5                     | M05PHC05                        | M05PHC10  |           | M05PHC15  |           |
| 300Å   | SIL     | 5                     | L05SIC05                        | L05SIC10  |           | L05SIC15  |           |
| 300Å   | C4      | 5                     | L05CSC05                        | L05CSC10  |           | L05CSC15  |           |
| 300Å   | C8      | 5                     | L05CMC05                        | L05CMC10  |           | L05CMC15  |           |
| 300Å   | C18     | 5                     | L05CLC05                        | L05CLC10  |           | L05CLC15  |           |

#### Kromasil Classic, 3.0 mm i.d. columns

#### Kromasil Classic, 3.9 mm i.d. columns

|        |       |                       | column size, i.d. × length [mm] |           |           |
|--------|-------|-----------------------|---------------------------------|-----------|-----------|
| Family | Phase | particle<br>size [µm] | 3.9 × 150                       | 3.9 × 250 | 3.9 × 300 |
| 60Å    | CN    | 10                    |                                 | S10CNJ25  |           |
| 100Å   | C18   | 10                    | M10CLJ15                        | M10CLJ25  | M10CLJ30  |

|        |         |                       | column size, i.d. × length [mm] |           |           |           |
|--------|---------|-----------------------|---------------------------------|-----------|-----------|-----------|
| Family | Phase   | particle<br>size [µm] | 4.0 × 50                        | 4.0 × 100 | 4.0 × 150 | 4.0 × 250 |
| 60Å    | SIL     | 5                     | S05SIB05                        | S05SIB10  | S05SIB15  | S05SIB25  |
| 60Å    | SIL     | 7                     | S07SIB05                        | S07SIB10  | S07SIB15  | S07SIB25  |
| 60Å    | SIL     | 10                    | S10SIB05                        | S10SIB10  | S10SIB15  | S10SIB25  |
| 60Å    | SIL     | 13                    | S13SIB05                        | S13SIB10  | S13SIB15  | S13SIB25  |
| 60Å    | SIL     | 16                    | S16SIB05                        | S16SIB10  | S16SIB15  | S16SIB25  |
| 60Å    | CN      | 5                     | S05CNB05                        | S05CNB10  | S05CNB15  | S05CNB25  |
| 60Å    | CN      | 10                    | S10CNB05                        | S10CNB10  | S10CNB15  | S10CNB25  |
| 60Å    | CN      | 16                    | S16CNB05                        | S16CNB10  | S16CNB15  | S16CNB25  |
| 60Å    | Diol    | 5                     | S05DIB05                        | S05DIB10  | S05DIB15  | S05DIB25  |
| 60Å    | Diol    | 10                    | S10DIB05                        | S10DIB10  | S10DIB15  | S10DIB25  |
| 60Å    | HILIC-D | 5                     | S05HDB05                        | S05HDB10  | S05HDB15  | S05HDB25  |
| 60Å    | HILIC-D | 10                    | S10HDB05                        | S10HDB10  | S10HDB15  | S10HDB25  |

### Kromasil 60 Å, 4.0 mm i.d. columns

#### Kromasil 100 Å, 4.0 mm i.d. columns

|        |       |                       | column size, i.d. × length [mm] |           |           |  |
|--------|-------|-----------------------|---------------------------------|-----------|-----------|--|
| Family | Phase | particle<br>size [µm] | 4.0 × 125                       | 4.0 × 200 | 4.0 × 300 |  |
| 100Å   | C8    | 5                     | M05CMB1F                        |           |           |  |
| 100Å   | C8    | 10                    |                                 |           | M10CMB30  |  |
| 100Å   | C18   | 5                     | M05CLB1F                        | M05CLB20  | M05CLB30  |  |
| 100Å   | C18   | 10                    |                                 |           | M10CLB30  |  |



|        |        | <i></i> .             |          | column size, i.d. × length [mm] |           |           |  |  |
|--------|--------|-----------------------|----------|---------------------------------|-----------|-----------|--|--|
| Family | Phase  | particle<br>size [µm] | 4.0 × 50 | 4.0 × 100                       | 4.0 × 150 | 4.0 × 250 |  |  |
| 100Å   | SIL    | 3.5                   | MH3SIB05 | MH3SIB10                        | MH3SIB15  | MH3SIB25  |  |  |
| 100Å   | SIL    | 5                     | M05SIB05 | M05SIB10                        | M05SIB15  | M05SIB25  |  |  |
| 100Å   | SIL    | 7                     | M07SIB05 | M07SIB10                        | M07SIB15  | M07SIB25  |  |  |
| 100Å   | SIL    | 10                    | M10SIB05 | M10SIB10                        | M10SIB15  | M10SIB25  |  |  |
| 100Å   | SIL    | 13                    | M13SIB05 | M13SIB10                        | M13SIB15  | M13SIB25  |  |  |
| 100Å   | SIL    | 16                    | M16SIB05 | M16SIB10                        | M16SIB15  | M16SIB25  |  |  |
| 100Å   | C4     | 3.5                   | MH3CSB05 | MH3CSB10                        | MH3CSB15  | MH3CSB25  |  |  |
| 100Å   | C4     | 5                     | M05CSB05 | M05CSB10                        | M05CSB15  | M05CSB25  |  |  |
| 100Å   | C4     | 7                     | M07CSB05 | M07CSB10                        | M07CSB15  | M07CSB25  |  |  |
| 100Å   | C4     | 10                    | M10CSB05 | M10CSB10                        | M10CSB15  | M10CSB25  |  |  |
| 100Å   | C4     | 13                    | M13CSB05 | M13CSB10                        | M13CSB15  | M13CSB25  |  |  |
| 100Å   | C4     | 16                    | M16CSB05 | M16CSB10                        | M16CSB15  | M16CSB25  |  |  |
| 100Å   | C8     | 3.5                   | MH3CMB05 | MH3CMB10                        | MH3CMB15  | MH3CMB25  |  |  |
| 100Å   | C8     | 5                     | M05CMB05 | M05CMB10                        | M05CMB15  | M05CMB25  |  |  |
| 100Å   | C8     | 7                     | M07CMB05 | M07CMB10                        | M07CMB15  | M07CMB25  |  |  |
| 100Å   | C8     | 10                    | M10CMB05 | M10CMB10                        | M10CMB15  | M10CMB25  |  |  |
| 100Å   | C8     | 13                    | M13CMB05 | M13CMB10                        | M13CMB15  | M13CMB25  |  |  |
| 100Å   | C8     | 16                    | M16CMB05 | M16CMB10                        | M16CMB15  | M16CMB25  |  |  |
| 100Å   | C18    | 3.5                   | MH3CLB05 | MH3CLB10                        | MH3CLB15  | MH3CLB25  |  |  |
| 100Å   | C18    | 5                     | M05CLB05 | M05CLB10                        | M05CLB15  | M05CLB25  |  |  |
| 100Å   | C18    | 7                     | M07CLB05 | M07CLB10                        | M07CLB15  | M07CLB25  |  |  |
| 100Å   | C18    | 10                    | M10CLB05 | M10CLB10                        | M10CLB15  | M10CLB25  |  |  |
| 100Å   | C18    | 13                    | M13CLB05 | M13CLB10                        | M13CLB15  | M13CLB25  |  |  |
| 100Å   | C18    | 16                    | M16CLB05 | M16CLB10                        | M16CLB15  | M16CLB25  |  |  |
| 100Å   | NH2    | 3.5                   | MH3NHB05 | MH3NHB10                        | MH3NHB15  | MH3NHB25  |  |  |
| 100Å   | NH2    | 5                     | M05NHB05 | M05NHB10                        | M05NHB15  | M05NHB25  |  |  |
| 100Å   | NH2    | 7                     | M07NHB05 | M07NHB10                        | M07NHB15  | M07NHB25  |  |  |
| 100Å   | NH2    | 10                    | M10NHB05 | M10NHB10                        | M10NHB15  | M10NHB25  |  |  |
| 100Å   | NH2    | 13                    | M13NHB05 | M13NHB10                        | M13NHB15  | M13NHB25  |  |  |
| 100Å   | NH2    | 16                    | M16NHB05 | M16NHB10                        | M16NHB15  | M16NHB25  |  |  |
| 100Å   | Phenyl | 5                     | M05PHB05 | M05PHB10                        | M05PHB15  | M05PHB25  |  |  |
| 100Å   | Phenyl | 10                    | M10PHB05 | M10PHB10                        | M10PHB15  | M10PHB25  |  |  |
| 100Å   | Phenyl | 16                    | M16PHB05 | M16PHB10                        | M16PHB15  | M16PHB25  |  |  |

### Kromasil 100 Å, 4.0 mm i.d. columns

|        |       |                       |          | column size, i.c | d. × length [mm] |           |  |
|--------|-------|-----------------------|----------|------------------|------------------|-----------|--|
| Family | Phase | particle<br>size [µm] | 4.0 × 50 | 4.0 × 100        | 4.0 × 150        | 4.0 × 250 |  |
| 300Å   | SIL   | 5                     | L05SIB05 | L05SIB10         | L05SIB15         | L05SIB25  |  |
| 300Å   | SIL   | 10                    | L10SIB05 | L10SIB10         | L10SIB15         | L10SIB25  |  |
| 300Å   | SIL   | 16                    | L16SIB05 | L16SIB10         | L16SIB15         | L16SIB25  |  |
| 300Å   | C4    | 5                     | L05CSB05 | L05CSB10         | L05CSB15         | L05CSB25  |  |
| 300Å   | C4    | 10                    | L10CSB05 | L10CSB10         | L10CSB15         | L10CSB25  |  |
| 300Å   | C4    | 16                    | L16CSB05 | L16CSB10         | L16CSB15         | L16CSB25  |  |
| 300Å   | C8    | 5                     | L05CMB05 | L05CMB10         | L05CMB15         | L05CMB25  |  |
| 300Å   | C8    | 10                    | L10CMB05 | L10CMB10         | L10CMB15         | L10CMB25  |  |
| 300Å   | C8    | 16                    | L16CMB05 | L16CMB10         | L16CMB15         | L16CMB25  |  |
| 300Å   | C18   | 5                     | L05CLB05 | L05CLB10         | L05CLB15         | L05CLB25  |  |
| 300Å   | C18   | 10                    | L10CLB05 | L10CLB10         | L10CLB15         | L10CLB25  |  |
| 300Å   | C18   | 16                    | L16CLB05 | L16CLB10         | L16CLB15         | L16CLB25  |  |

#### Kromasil 300 Å, 4.0 mm i.d. columns

### Kromasil 60 Å, 4.6 mm i.d. columns

|        |         |                       | column size, i.d. × length [mm] |           |           |           |
|--------|---------|-----------------------|---------------------------------|-----------|-----------|-----------|
| Family | Phase   | particle<br>size [µm] | 4.6 × 50                        | 4.6 × 100 | 4.6 × 150 | 4.6 × 250 |
| 60Å    | SIL     | 5                     | S05SIA05                        | S05SIA10  | S05SIA15  | S05SIA25  |
| 60Å    | SIL     | 7                     | S07SIA05                        | S07SIA10  | S07SIA15  | S07SIA25  |
| 60Å    | SIL     | 10                    | S10SIA05                        | S10SIA10  | S10SIA15  | S10SIA25  |
| 60Å    | SIL     | 13                    | S13SIA05                        | S13SIA10  | S13SIA15  | S13SIA25  |
| 60Å    | SIL     | 16                    | S16SIA05                        | S16SIA10  | S16SIA15  | S16SIA25  |
| 60Å    | CN      | 5                     | S05CNA05                        | S05CNA10  | S05CNA15  | S05CNA25  |
| 60Å    | CN      | 10                    | S10CNA05                        | S10CNA10  | S10CNA15  | S10CNA25  |
| 60Å    | CN      | 16                    | S16CNA05                        | S16CNA10  | S16CNA15  | S16CNA25  |
| 60Å    | Diol    | 5                     | S05DIA05                        | S05DIA10  | S05DIA15  | S05DIA25  |
| 60Å    | Diol    | 10                    | S10DIA05                        | S10DIA10  | S10DIA15  | S10DIA25  |
| 60Å    | HILIC-D | 5                     | S05HDA05                        | S05HDA10  | S05HDA15  | S05HDA25  |
| 60Å    | HILIC-D | 10                    | S10HDA05                        | S10HDA10  | S10HDA15  | S10HDA25  |



## Kromasil 100 Å, 4.6 mm i.d. columns

|        |        |                       |          | column size, i.o | d. × length [mm] |           |
|--------|--------|-----------------------|----------|------------------|------------------|-----------|
| Family | Phase  | particle<br>size [µm] | 4.6 × 50 | 4.6 × 100        | 4.6 × 150        | 4.6 × 250 |
| 100Å   | SIL    | 3.5                   | MH3SIA05 | MH3SIA10         | MH3SIA15         | MH3SIA25  |
| 100Å   | SIL    | 5                     | M05SIA05 | M05SIA10         | M05SIA15         | M05SIA25  |
| 100Å   | SIL    | 7                     | M07SIA05 | M07SIA10         | M07SIA15         | M07SIA25  |
| 100Å   | SIL    | 10                    | M10SIA05 | M10SIA10         | M10SIA15         | M10SIA25  |
| 100Å   | SIL    | 13                    | M13SIA05 | M13SIA10         | M13SIA15         | M13SIA25  |
| 100Å   | SIL    | 16                    | M16SIA05 | M16SIA10         | M16SIA15         | M16SIA25  |
| 100Å   | C1     | 5                     |          |                  |                  | M05C1A25  |
| 100Å   | C4     | 2.5                   | MH2CSA05 | MH2CSA10         |                  |           |
| 100Å   | C4     | 3.5                   | MH3CSA05 | MH3CSA10         | MH3CSA15         | MH3CSA25  |
| 100Å   | C4     | 5                     | M05CSA05 | M05CSA10         | M05CSA15         | M05CSA25  |
| 100Å   | C4     | 7                     | M07CSA05 | M07CSA10         | M07CSA15         | M07CSA25  |
| 100Å   | C4     | 10                    | M10CSA05 | M10CSA10         | M10CSA15         | M10CSA25  |
| 100Å   | C4     | 13                    | M13CSA05 | M13CSA10         | M13CSA15         | M13CSA25  |
| 100Å   | C4     | 16                    | M16CSA05 | M16CSA10         | M16CSA15         | M16CSA25  |
| 100Å   | C8     | 2.5                   | MH2CMA05 | MH2CMA10         |                  |           |
| 100Å   | C8     | 3.5                   | MH3CMA05 | MH3CMA10         | MH3CMA15         | MH3CMA25  |
| 100Å   | C8     | 5                     | M05CMA05 | M05CMA10         | M05CMA15         | M05CMA25  |
| 100Å   | C8     | 7                     | M07CMA05 | M07CMA10         | M07CMA15         | M07CMA25  |
| 100Å   | C8     | 10                    | M10CMA05 | M10CMA10         | M10CMA15         | M10CMA25  |
| 100Å   | C8     | 13                    | M13CMA05 | M13CMA10         | M13CMA15         | M13CMA25  |
| 100Å   | C8     | 16                    | M16CMA05 | M16CMA10         | M16CMA15         | M16CMA25  |
| 100Å   | C18    | 2.5                   | MH2CLA05 | MH2CLA10         |                  |           |
| 100Å   | C18    | 3.5                   | MH3CLA05 | MH3CLA10         | MH3CLA15         | MH3CLA25  |
| 100Å   | C18    | 5                     | M05CLA05 | M05CLA10         | M05CLA15         | M05CLA25  |
| 100Å   | C18    | 7                     | M07CLA05 | M07CLA10         | M07CLA15         | M07CLA25  |
| 100Å   | C18    | 10                    | M10CLA05 | M10CLA10         | M10CLA15         | M10CLA25  |
| 100Å   | C18    | 13                    | M13CLA05 | M13CLA10         | M13CLA15         | M13CLA25  |
| 100Å   | C18    | 16                    | M16CLA05 | M16CLA10         | M16CLA15         | M16CLA25  |
| 100Å   | NH2    | 3.5                   | MH3NHA05 | MH3NHA10         | MH3NHA15         | MH3NHA25  |
| 100Å   | NH2    | 5                     | M05NHA05 | M05NHA10         | M05NHA15         | M05NHA25  |
| 100Å   | NH2    | 7                     | M07NHA05 | M07NHA10         | M07NHA15         | M07NHA25  |
| 100Å   | NH2    | 10                    | M10NHA05 | M10NHA10         | M10NHA15         | M10NHA25  |
| 100Å   | NH2    | 13                    | M13NHA05 | M13NHA10         | M13NHA15         | M13NHA25  |
| 100Å   | NH2    | 16                    | M16NHA05 | M16NHA10         | M16NHA15         | M16NHA25  |
| 100Å   | Phenyl | 5                     | M05PHA05 | M05PHA10         | M05PHA15         | M05PHA25  |
| 100Å   | Phenyl | 10                    | M10PHA05 | M10PHA10         | M10PHA15         | M10PHA25  |
| 100Å   | Phenyl | 16                    | M16PHA05 | M16PHA10         | M16PHA15         | M16PHA25  |
|        |        |                       |          |                  |                  |           |

|        |       |                       |          | column size, i.d. × length [mm] |           |           |           |
|--------|-------|-----------------------|----------|---------------------------------|-----------|-----------|-----------|
| Family | Phase | particle<br>size [µm] | 4.6 × 30 | 4.6 × 33                        | 4.6 × 125 | 4.6 × 200 | 4.6 × 300 |
| 100Å   | SIL   | 3.5                   |          |                                 | MH3SIA1F  | MH3SIA20  |           |
| 100Å   | C4    | 3.5                   |          |                                 | MH3CSA1F  | MH3CSA20  |           |
| 100Å   | C8    | 3.5                   |          |                                 | MH3CMA1F  | MH3CMA20  |           |
| 100Å   | C8    | 10                    |          |                                 |           | M10CMA20  | M10CMA30  |
| 100Å   | C18   | 3.5                   |          |                                 | MH3CLA1F  | MH3CLA20  |           |
| 100Å   | C18   | 5                     | M05CLA03 | M05CLAT3                        |           |           |           |
| 100Å   | C18   | 10                    |          |                                 |           | M10CLA20  | M10CLA30  |
| 100Å   | NH2   | 3.5                   |          |                                 | MH3NHA1F  | MH3NHA20  |           |

# Kromasil 100 Å, 4.6 mm i.d. columns

## Kromasil 300 Å, 4.6 mm i.d. columns

|        |       |                       |          | column size, i.c | l. × length [mm] |           |
|--------|-------|-----------------------|----------|------------------|------------------|-----------|
| Family | Phase | particle<br>size [µm] | 4.6 × 50 | 4.6 × 100        | 4.6 × 150        | 4.6 × 250 |
| 300Å   | SIL   | 5                     | L05SIA05 | L05SIA10         | L05SIA15         | L05SIA25  |
| 300Å   | SIL   | 10                    | L10SIA05 | L10SIA10         | L10SIA15         | L10SIA25  |
| 300Å   | SIL   | 16                    | L16SIA05 | L16SIA10         | L16SIA15         | L16SIA25  |
| 300Å   | C4    | 5                     | L05CSA05 | L05CSA10         | L05CSA15         | L05CSA25  |
| 300Å   | C4    | 10                    | L10CSA05 | L10CSA10         | L10CSA15         | L10CSA25  |
| 300Å   | C4    | 16                    | L16CSA05 | L16CSA10         | L16CSA15         | L16CSA25  |
| 300Å   | C8    | 5                     | L05CMA05 | L05CMA10         | L05CMA15         | L05CMA25  |
| 300Å   | C8    | 10                    | L10CMA05 | L10CMA10         | L10CMA15         | L10CMA25  |
| 300Å   | C8    | 16                    | L16CMA05 | L16CMA10         | L16CMA15         | L16CMA25  |
| 300Å   | C18   | 5                     | L05CLA05 | L05CLA10         | L05CLA15         | L05CLA25  |
| 300Å   | C18   | 10                    | L10CLA05 | L10CLA10         | L10CLA15         | L10CLA25  |
| 300Å   | C18   | 16                    | L16CLA05 | L16CLA10         | L16CLA15         | L16CLA25  |





|        |         |                       | column size, i.d. | × length [mm] |
|--------|---------|-----------------------|-------------------|---------------|
| Family | Phase   | particle<br>size [µm] | 10 × 150          | 10 × 250      |
| 60Å    | SIL     | 5                     | S05SIP15          | S05SIP25      |
| 60Å    | SIL     | 7                     | S07SIP15          | S07SIP25      |
| 60Å    | SIL     | 10                    | S10SIP15          | S10SIP25      |
| 60Å    | SIL     | 13                    | S13SIP15          | S13SIP25      |
| 60Å    | SIL     | 16                    | S16SIP15          | S16SIP25      |
| 60Å    | CN      | 5                     | S05CNP15          | S05CNP25      |
| 60Å    | CN      | 10                    | S10CNP15          | S10CNP25      |
| 60Å    | CN      | 16                    | S16CNP15          | S16CNP25      |
| 60Å    | Diol    | 5                     | S05DIP15          | S05DIP25      |
| 60Å    | Diol    | 10                    | S10DIP15          | S10DIP25      |
| 60Å    | HILIC-D | 5                     | S05HDP15          | S05HDP25      |
| 60Å    | HILIC-D | 10                    | S10HDP15          | S10HDP25      |

# Kromasil 60 Å, 10 mm i.d. columns

## Kromasil 60 Å, 21.2 mm i.d. columns

|        |         |                       | column size, i.d | . × length [mm] |
|--------|---------|-----------------------|------------------|-----------------|
| Family | Phase   | particle<br>size [µm] | 21.2 × 150       | 21.2 × 250      |
| 60Å    | SIL     | 5                     | S05SIQ15         | S05SIQ25        |
| 60Å    | SIL     | 7                     | S07SIQ15         | S07SIQ25        |
| 60Å    | SIL     | 10                    | S10SIQ15         | S10SIQ25        |
| 60Å    | SIL     | 13                    | S13SIQ15         | S13SIQ25        |
| 60Å    | SIL     | 16                    | S16SIQ15         | S16SIQ25        |
| 60Å    | CN      | 5                     | S05CNQ15         | S05CNQ25        |
| 60Å    | CN      | 10                    | S10CNQ15         | S10CNQ25        |
| 60Å    | CN      | 16                    | S16CNQ15         | S16CNQ25        |
| 60Å    | Diol    | 5                     | S05DIQ15         | S05DIQ25        |
| 60Å    | Diol    | 10                    | S10DIQ15         | S10DIQ25        |
| 60Å    | HILIC-D | 5                     | S05HDQ15         | S05HDQ25        |
| 60Å    | HILIC-D | 10                    | S10HDQ15         | S10HDQ25        |



| Kromasil 60 Å, | 30 | mm | i.d. | columns |
|----------------|----|----|------|---------|
|----------------|----|----|------|---------|

|        |         |                       | column size, i.d. | × length [mm] |
|--------|---------|-----------------------|-------------------|---------------|
| Family | Phase   | particle<br>size [µm] | 30 × 150          | 30 × 250      |
| 60Å    | SIL     | 5                     | S05SIR15          | S05SIR25      |
| 60Å    | SIL     | 7                     | S07SIR15          | S07SIR25      |
| 60Å    | SIL     | 10                    | S10SIR15          | S10SIR25      |
| 60Å    | SIL     | 13                    | S13SIR15          | S13SIR25      |
| 60Å    | SIL     | 16                    | S16SIR15          | S16SIR25      |
| 60Å    | CN      | 5                     | S05CNR15          | S05CNR25      |
| 60Å    | CN      | 10                    | S10CNR15          | S10CNR25      |
| 60Å    | CN      | 16                    | S16CNR15          | S16CNR25      |
| 60Å    | Diol    | 5                     | S05DIR15          | S05DIR25      |
| 60Å    | Diol    | 10                    | S10DIR15          | S10DIR25      |
| 60Å    | HILIC-D | 5                     | S05HDR15          | S05HDR25      |
| 60Å    | HILIC-D | 10                    | S10HDR15          | S10HDR25      |

## Kromasil 60 Å, 50 mm i.d. columns

|        |         |                       | column size, i.d. | × length [mm] |
|--------|---------|-----------------------|-------------------|---------------|
| Family | Phase   | particle<br>size [µm] | 50 × 150          | 50 × 250      |
| 60Å    | SIL     | 7                     | S07SIT15          | S07SIT25      |
| 60Å    | SIL     | 10                    | S10SIT15          | S10SIT25      |
| 60Å    | SIL     | 13                    | S13SIT15          | S13SIT25      |
| 60Å    | SIL     | 16                    | S16SIT15          | S16SIT25      |
| 60Å    | CN      | 10                    | S10CNT15          | S10CNT25      |
| 60Å    | CN      | 16                    | S16CNT15          | S16CNT25      |
| 60Å    | Diol    | 10                    | S10DIT15          | S10DIT25      |
| 60Å    | HILIC-D | 10                    | S10HDT15          | S10HDT25      |

|        |        |                       | column size, i.d. × length [mm] |          |  |
|--------|--------|-----------------------|---------------------------------|----------|--|
| Family | Phase  | particle<br>size [µm] | 10 × 150                        | 10 × 250 |  |
| 100Å   | SIL    | 5                     | M05SIP15                        | M05SIP25 |  |
| 100Å   | SIL    | 7                     | M07SIP15                        | M07SIP25 |  |
| 100Å   | SIL    | 10                    | M10SIP15                        | M10SIP25 |  |
| 100Å   | SIL    | 13                    | M13SIP15                        | M13SIP25 |  |
| 100Å   | SIL    | 16                    | M16SIP15                        | M16SIP25 |  |
| 100Å   | C4     | 5                     | M05CSP15                        | M05CSP25 |  |
| 100Å   | C4     | 7                     | M07CSP15                        | M07CSP25 |  |
| 100Å   | C4     | 10                    | M10CSP15                        | M10CSP25 |  |
| 100Å   | C4     | 13                    | M13CSP15                        | M13CSP25 |  |
| 100Å   | C4     | 16                    | M16CSP15                        | M16CSP25 |  |
| 100Å   | C8     | 5                     | M05CMP15                        | M05CMP25 |  |
| 100Å   | C8     | 7                     | M07CMP15                        | M07CMP25 |  |
| 100Å   | C8     | 10                    | M10CMP15                        | M10CMP25 |  |
| 100Å   | C8     | 13                    | M13CMP15                        | M13CMP25 |  |
| 100Å   | C8     | 16                    | M16CMP15                        | M16CMP25 |  |
| 100Å   | C18    | 5                     | M05CLP15                        | M05CLP25 |  |
| 100Å   | C18    | 7                     | M07CLP15                        | M07CLP25 |  |
| 100Å   | C18    | 10                    | M10CLP15                        | M10CLP25 |  |
| 100Å   | C18    | 13                    | M13CLP15                        | M13CLP25 |  |
| 100Å   | C18    | 16                    | M16CLP15                        | M16CLP25 |  |
| 100Å   | NH2    | 5                     | M05NHP15                        | M05NHP25 |  |
| 100Å   | NH2    | 7                     | M07NHP15                        | M07NHP25 |  |
| 100Å   | NH2    | 10                    | M10NHP15                        | M10NHP25 |  |
| 100Å   | NH2    | 13                    | M13NHP15                        | M13NHP25 |  |
| 100Å   | NH2    | 16                    | M16NHP15                        | M16NHP25 |  |
| 100Å   | Phenyl | 5                     | M05PHP15                        | M05PHP25 |  |
| 100Å   | Phenyl | 10                    | M10PHP15                        | M10PHP25 |  |
| 100Å   | Phenyl | 16                    | M16PHP15                        | M16PHP25 |  |

## Kromasil 100 Å, 10 mm i.d. columns





|        |        |                       | column size, i.d. × length [mm] |            |  |
|--------|--------|-----------------------|---------------------------------|------------|--|
| Family | Phase  | particle<br>size [µm] | 21.2 × 150                      | 21.2 × 250 |  |
| 100Å   | SIL    | 5                     | M05SIQ15                        | M05SIQ25   |  |
| 100Å   | SIL    | 7                     | M07SIQ15                        | M07SIQ25   |  |
| 100Å   | SIL    | 10                    | M10SIQ15                        | M10SIQ25   |  |
| 100Å   | SIL    | 13                    | M13SIQ15                        | M13SIQ25   |  |
| 100Å   | SIL    | 16                    | M16SIQ15                        | M16SIQ25   |  |
| 100Å   | C4     | 5                     | M05CSQ15                        | M05CSQ25   |  |
| 100Å   | C4     | 7                     | M07CSQ15                        | M07CSQ25   |  |
| 100Å   | C4     | 10                    | M10CSQ15                        | M10CSQ25   |  |
| 100Å   | C4     | 13                    | M13CSQ15                        | M13CSQ25   |  |
| 100Å   | C4     | 16                    | M16CSQ15                        | M16CSQ25   |  |
| 100Å   | C8     | 5                     | M05CMQ15                        | M05CMQ25   |  |
| 100Å   | C8     | 7                     | M07CMQ15                        | M07CMQ25   |  |
| 100Å   | C8     | 10                    | M10CMQ15                        | M10CMQ25   |  |
| 100Å   | C8     | 13                    | M13CMQ15                        | M13CMQ25   |  |
| 100Å   | C8     | 16                    | M16CMQ15                        | M16CMQ25   |  |
| 100Å   | C18    | 5                     | M05CLQ15                        | M05CLQ25   |  |
| 100Å   | C18    | 7                     | M07CLQ15                        | M07CLQ25   |  |
| 100Å   | C18    | 10                    | M10CLQ15                        | M10CLQ25   |  |
| 100Å   | C18    | 13                    | M13CLQ15                        | M13CLQ25   |  |
| 100Å   | C18    | 16                    | M16CLQ15                        | M16CLQ25   |  |
| 100Å   | NH2    | 5                     | M05NHQ15                        | M05NHQ25   |  |
| 100Å   | NH2    | 7                     | M07NHQ15                        | M07NHQ25   |  |
| 100Å   | NH2    | 10                    | M10NHQ15                        | M10NHQ25   |  |
| 100Å   | NH2    | 13                    | M13NHQ15                        | M13NHQ25   |  |
| 100Å   | NH2    | 16                    | M16NHQ15                        | M16NHQ25   |  |
| 100Å   | Phenyl | 5                     | M05PHQ15                        | M05PHQ25   |  |
| 100Å   | Phenyl | 10                    | M10PHQ15                        | M10PHQ25   |  |
| 100Å   | Phenyl | 16                    | M16PHQ15                        | M16PHQ25   |  |

## Kromasil 100 Å, 21.2 mm i.d. columns



|        |        |                       | column size, i.d. × length [mm] |          |  |
|--------|--------|-----------------------|---------------------------------|----------|--|
| Family | Phase  | particle<br>size [µm] | 30 × 150                        | 30 × 250 |  |
| 100Å   | SIL    | 5                     | M05SIR15                        | M05SIR25 |  |
| 100Å   | SIL    | 7                     | M07SIR15                        | M07SIR25 |  |
| 100Å   | SIL    | 10                    | M10SIR15                        | M10SIR25 |  |
| 100Å   | SIL    | 13                    | M13SIR15                        | M13SIR25 |  |
| 100Å   | SIL    | 16                    | M16SIR15                        | M16SIR25 |  |
| 100Å   | C4     | 5                     | M05CSR15                        | M05CSR25 |  |
| 100Å   | C4     | 7                     | M07CSR15                        | M07CSR25 |  |
| 100Å   | C4     | 10                    | M10CSR15                        | M10CSR25 |  |
| 100Å   | C4     | 13                    | M13CSR15                        | M13CSR25 |  |
| 100Å   | C4     | 16                    | M16CSR15                        | M16CSR25 |  |
| 100Å   | C8     | 5                     | M05CMR15                        | M05CMR25 |  |
| 100Å   | C8     | 7                     | M07CMR15                        | M07CMR25 |  |
| 100Å   | C8     | 10                    | M10CMR15                        | M10CMR25 |  |
| 100Å   | C8     | 13                    | M13CMR15                        | M13CMR25 |  |
| 100Å   | C8     | 16                    | M16CMR15                        | M16CMR25 |  |
| 100Å   | C18    | 5                     | M05CLR15                        | M05CLR25 |  |
| 100Å   | C18    | 7                     | M07CLR15                        | M07CLR25 |  |
| 100Å   | C18    | 10                    | M10CLR15                        | M10CLR25 |  |
| 100Å   | C18    | 13                    | M13CLR15                        | M13CLR25 |  |
| 100Å   | C18    | 16                    | M16CLR15                        | M16CLR25 |  |
| 100Å   | NH2    | 5                     | M05NHR15                        | M05NHR25 |  |
| 100Å   | NH2    | 7                     | M07NHR15                        | M07NHR25 |  |
| 100Å   | NH2    | 10                    | M10NHR15                        | M10NHR25 |  |
| 100Å   | NH2    | 13                    | M13NHR15                        | M13NHR25 |  |
| 100Å   | NH2    | 16                    | M16NHR15                        | M16NHR25 |  |
| 100Å   | Phenyl | 5                     | M05PHR15                        | M05PHR25 |  |
| 100Å   | Phenyl | 10                    | M10PHR15                        | M10PHR25 |  |
| 100Å   | Phenyl | 16                    | M16PHR15                        | M16PHR25 |  |

# Kromasil 100 Å, 30 mm i.d. columns

|        |        |                       | column size, i.d. × length [mm] |          |  |
|--------|--------|-----------------------|---------------------------------|----------|--|
| Family | Phase  | particle<br>size [µm] | 50 × 150                        | 50 × 250 |  |
| 100Å   | SIL    | 7                     | M07SIT15                        | M07SIT25 |  |
| 100Å   | SIL    | 10                    | M10SIT15                        | M10SIT25 |  |
| 100Å   | SIL    | 13                    | M13SIT15                        | M13SIT25 |  |
| 100Å   | SIL    | 16                    | M16SIT15                        | M16SIT25 |  |
| 100Å   | C4     | 7                     | M07CST15                        | M07CST25 |  |
| 100Å   | C4     | 10                    | M10CST15                        | M10CST25 |  |
| 100Å   | C4     | 13                    | M13CST15                        | M13CST25 |  |
| 100Å   | C4     | 16                    | M16CST15                        | M16CST25 |  |
| 100Å   | C8     | 7                     | M07CMT15                        | M07CMT25 |  |
| 100Å   | C8     | 10                    | M10CMT15                        | M10CMT25 |  |
| 100Å   | C8     | 13                    | M13CMT15                        | M13CMT25 |  |
| 100Å   | C8     | 16                    | M16CMT15                        | M16CMT25 |  |
| 100Å   | C18    | 7                     | M07CLT15                        | M07CLT25 |  |
| 100Å   | C18    | 10                    | M10CLT15                        | M10CLT25 |  |
| 100Å   | C18    | 13                    | M13CLT15                        | M13CLT25 |  |
| 100Å   | C18    | 16                    | M16CLT15                        | M16CLT25 |  |
| 100Å   | NH2    | 7                     | M07NHT15                        | M07NHT25 |  |
| 100Å   | NH2    | 10                    | M10NHT15                        | M10NHT25 |  |
| 100Å   | NH2    | 13                    | M13NHT15                        | M13NHT25 |  |
| 100Å   | NH2    | 16                    | M16NHT15                        | M16NHT25 |  |
| 100Å   | Phenyl | 10                    | M10PHT15                        | M10PHT25 |  |
| 100Å   | Phenyl | 16                    | M16PHT15                        | M16PHT25 |  |

## Kromasil 100 Å, 50 mm i.d. columns





|        |       |                       | column size, i.d. × length [mm] |          |  |
|--------|-------|-----------------------|---------------------------------|----------|--|
| Family | Phase | particle<br>size [µm] | 10 × 150                        | 10 × 250 |  |
| 300Å   | SIL   | 5                     | L05SIP15                        | L05SIP25 |  |
| 300Å   | SIL   | 10                    | L10SIP15                        | L10SIP25 |  |
| 300Å   | SIL   | 16                    | L16SIP15                        | L16SIP25 |  |
| 300Å   | C4    | 5                     | L05CSP15                        | L05CSP25 |  |
| 300Å   | C4    | 10                    | L10CSP15                        | L10CSP25 |  |
| 300Å   | C4    | 16                    | L16CSP15                        | L16CSP25 |  |
| 300Å   | C8    | 5                     | L05CMP15                        | L05CMP25 |  |
| 300Å   | C8    | 10                    | L10CMP15                        | L10CMP25 |  |
| 300Å   | C8    | 16                    | L16CMP15                        | L16CMP25 |  |
| 300Å   | C18   | 5                     | L05CLP15                        | L05CLP25 |  |
| 300Å   | C18   | 10                    | L10CLP15                        | L10CLP25 |  |
| 300Å   | C18   | 16                    | L16CLP15                        | L16CLP25 |  |

## Kromasil 300 Å, 10 mm i.d. columns

## Kromasil 300 Å, 21.2 mm i.d. columns

|        |       |                       | column size, i.d | . × length [mm] |
|--------|-------|-----------------------|------------------|-----------------|
| Family | Phase | particle<br>size [µm] | 21.2 × 150       | 21.2 × 250      |
| 300Å   | SIL   | 5                     | L05SIQ15         | L05SIQ25        |
| 300Å   | SIL   | 10                    | L10SIQ15         | L10SIQ25        |
| 300Å   | SIL   | 16                    | L16SIQ15         | L16SIQ25        |
| 300Å   | C4    | 5                     | L05CSQ15         | L05CSQ25        |
| 300Å   | C4    | 10                    | L10CSQ15         | L10CSQ25        |
| 300Å   | C4    | 16                    | L16CSQ15         | L16CSQ25        |
| 300Å   | C8    | 5                     | L05CMQ15         | L05CMQ25        |
| 300Å   | C8    | 10                    | L10CMQ15         | L10CMQ25        |
| 300Å   | C8    | 16                    | L16CMQ15         | L16CMQ25        |
| 300Å   | C18   | 5                     | L05CLQ15         | L05CLQ25        |
| 300Å   | C18   | 10                    | L10CLQ15         | L10CLQ25        |
| 300Å   | C18   | 16                    | L16CLQ15         | L16CLQ25        |



|        |       |                       | column size, i.d. × length [mm] |          |  |
|--------|-------|-----------------------|---------------------------------|----------|--|
| Family | Phase | particle<br>size [µm] | 30 × 150                        | 30 × 250 |  |
| 300Å   | SIL   | 5                     | L05SIR15                        | L05SIR25 |  |
| 300Å   | SIL   | 10                    | L10SIR15                        | L10SIR25 |  |
| 300Å   | SIL   | 16                    | L16SIR15                        | L16SIR25 |  |
| 300Å   | C4    | 5                     | L05CSR15                        | L05CSR25 |  |
| 300Å   | C4    | 10                    | L10CSR15                        | L10CSR25 |  |
| 300Å   | C4    | 16                    | L16CSR15                        | L16CSR25 |  |
| 300Å   | C8    | 5                     | L05CMR15                        | L05CMR25 |  |
| 300Å   | C8    | 10                    | L10CMR15                        | L10CMR25 |  |
| 300Å   | C8    | 16                    | L16CMR15                        | L16CMR25 |  |
| 300Å   | C18   | 5                     | L05CLR15                        | L05CLR25 |  |
| 300Å   | C18   | 10                    | L10CLR15                        | L10CLR25 |  |
| 300Å   | C18   | 16                    | L16CLR15                        | L16CLR25 |  |

# Kromasil 300 Å, 30 mm i.d. columns

## Kromasil 300 Å, 50 mm i.d. columns

|        |       |                       | column size, i.d. | × length [mm] |
|--------|-------|-----------------------|-------------------|---------------|
| Family | Phase | particle<br>size [µm] | 50 × 150          | 50 × 250      |
| 300Å   | SIL   | 10                    | L10SIT15          | L10SIT25      |
| 300Å   | SIL   | 16                    | L16SIT15          | L16SIT25      |
| 300Å   | C4    | 10                    | L10CST15          | L10CST25      |
| 300Å   | C4    | 16                    | L16CST15          | L16CST25      |
| 300Å   | C8    | 10                    | L10CMT15          | L10CMT25      |
| 300Å   | C8    | 16                    | L16CMT15          | L16CMT25      |
| 300Å   | C18   | 10                    | L10CLT15          | L10CLT25      |
| 300Å   | C18   | 16                    | L16CLT15          | L16CLT25      |

# Kromasil Eternity columns

#### Kromasil Eternity, 2.1 mm i.d. columns

|            |             |                       | column size, i.d. × length [mm] |           |           |
|------------|-------------|-----------------------|---------------------------------|-----------|-----------|
| Family     | Phase       | particle<br>size [µm] | 2.1 × 50                        | 2.1 × 100 | 2.1 × 150 |
| Eternity   | C18         | 2.5                   | EH2CLD05                        | EH2CLD10  |           |
| Eternity   | C18         | 5                     | E05CLD05                        |           | E05CLD15  |
| Eternity   | PhenylHexyl | 2.5                   | EH2PXD05                        | EH2PXD10  |           |
| Eternity   | PhenylHexyl | 5                     | E05PXD05                        |           | E05PXD15  |
| EternityXT | C18         | 1.8                   | XF1CLD05                        | XF1CLD10  |           |
| EternityXT | C18         | 2.5                   | XH2CLD05                        | XH2CLD10  |           |
| EternityXT | C18         | 5                     | X05CLD05                        |           | X05CLD15  |
| EternityXT | PhenylHexyl | 1.8                   | XF1PXD05                        | XF1PXD10  |           |
| EternityXT | PhenylHexyl | 2.5                   | XH2PXD05                        | XH2PXD10  |           |
| EternityXT | PhenylHexyl | 5                     | X05PXD05                        |           | X05PXD15  |

#### Kromasil Eternity, 4.6 mm i.d. columns

|            |             |                       | column size, i.d. × length [mm] |           |           |           |
|------------|-------------|-----------------------|---------------------------------|-----------|-----------|-----------|
| Family     | Phase       | particle<br>size [µm] | 4.6 × 50                        | 4.6 × 100 | 4.6 × 150 | 4.6 × 250 |
| Eternity   | C18         | 2.5                   | EH2CLA05                        | EH2CLA10  |           |           |
| Eternity   | C18         | 5                     | E05CLA05                        | E05CLA10  | E05CLA15  | E05CLA25  |
| Eternity   | PhenylHexyl | 2.5                   | EH2PXA05                        | EH2PXA10  |           |           |
| Eternity   | PhenylHexyl | 5                     | E05PXA05                        | E05PXA10  | E05PXA15  | E05PXA25  |
| EternityXT | C18         | 2.5                   | XH2CLA05                        | XH2CLA10  |           |           |
| EternityXT | C18         | 5                     | X05CLA05                        | X05CLA10  | X05CLA15  | X05CLA25  |
| EternityXT | C18         | 10                    |                                 |           |           | X10CLA25  |
| EternityXT | PhenylHexyl | 2.5                   | XH2PXA05                        | XH2PXA10  |           |           |
| EternityXT | PhenylHexyl | 5                     | X05PXA05                        | X05PXA10  | X05PXA15  | X05PXA25  |



#### Kromasil Eternity, 10 mm i.d. columns

|            |             |                       | column size, i.d. × length [mm] |          |          |
|------------|-------------|-----------------------|---------------------------------|----------|----------|
| Family     | Phase       | particle<br>size [µm] | 10 × 100                        | 10 × 150 | 10 × 250 |
| Eternity   | C18         | 5                     | E05CLP10                        | E05CLP15 | E05CLP25 |
| Eternity   | PhenylHexyl | 5                     | E05PXP10                        | E05PXP15 | E05PXP25 |
| EternityXT | C18         | 5                     | X05CLP10                        | X05CLP15 | X05CLP25 |
| EternityXT | C18         | 10                    | X10CLP10                        | X10CLP15 | X10CLP25 |
| EternityXT | PhenylHexyl | 5                     | X05PXP10                        | X05PXP15 | X05PXP25 |

#### Kromasil Eternity, 21.2 mm i.d. columns

|            |             |                       | colu       | column size, i.d. × length [mm] |            |  |
|------------|-------------|-----------------------|------------|---------------------------------|------------|--|
| Family     | Phase       | particle<br>size [µm] | 21.2 × 100 | 21.2 × 150                      | 21.2 × 250 |  |
| Eternity   | C18         | 5                     | E05CLQ10   | E05CLQ15                        | E05CLQ25   |  |
| Eternity   | PhenylHexyl | 5                     | E05PXQ10   | E05PXQ15                        | E05PXQ25   |  |
| EternityXT | C18         | 5                     | X05CLQ10   | X05CLQ15                        | X05CLQ25   |  |
| EternityXT | C18         | 10                    | X10CLQ10   | X10CLQ15                        | X10CLQ25   |  |
| EternityXT | PhenylHexyl | 5                     | X05PXQ10   | X05PXQ15                        | X05PXQ25   |  |

#### Kromasil Eternity, 30 mm i.d. columns

|            |             |                       | column size, i.d. × length [mm] |          |          |
|------------|-------------|-----------------------|---------------------------------|----------|----------|
| Family     | Phase       | particle<br>size [µm] | 30 × 100                        | 30 × 150 | 30 × 250 |
| Eternity   | C18         | 5                     | E05CLR10                        | E05CLR15 | E05CLR25 |
| Eternity   | PhenylHexyl | 5                     | E05PXR10                        | E05PXR15 | E05PXR25 |
| EternityXT | C18         | 10                    | X10CLR10                        | X10CLR15 | X10CLR25 |



# Kromasil Chiral columns

#### Kromasil Chiral, 4.6 mm i.d. columns

|        |              |                       | colun    | column size, i.d. × length [mm] |           |  |
|--------|--------------|-----------------------|----------|---------------------------------|-----------|--|
| Family | Phase        | particle<br>size [µm] | 4.6 × 50 | 4.6 × 150                       | 4.6 × 250 |  |
| Chiral | AmyCoat      | 3                     | C03ACA05 | C03ACA15                        |           |  |
| Chiral | AmyCoat      | 5                     | C05ACA05 | C05ACA15                        | C05ACA25  |  |
| Chiral | AmyCoat      | 10                    | C10ACA05 | C10ACA15                        | C10ACA25  |  |
| Chiral | AmyCoat      | 25                    | C25ACA05 | C25ACA15                        | C25ACA25  |  |
| Chiral | AmyCoat RP   | 3                     | C03ARA05 | C03ARA15                        |           |  |
| Chiral | AmyCoat RP   | 5                     | C05ARA05 | C05ARA15                        | C05ARA25  |  |
| Chiral | AmyCoat RP   | 10                    | C10ARA05 | C10ARA15                        | C10ARA25  |  |
| Chiral | AmyCoat RP   | 25                    | C25ARA05 | C25ARA15                        | C25ARA25  |  |
| Chiral | CelluCoat    | 3                     | C03CCA05 | C03CCA15                        |           |  |
| Chiral | CelluCoat    | 5                     | C05CCA05 | C05CCA15                        | C05CCA25  |  |
| Chiral | CelluCoat    | 10                    | C10CCA05 | C10CCA15                        | C10CCA25  |  |
| Chiral | CelluCoat    | 25                    | C25CCA05 | C25CCA15                        | C25CCA25  |  |
| Chiral | CelluCoat RP | 3                     | C03CRA05 | C03CRA15                        |           |  |
| Chiral | CelluCoat RP | 5                     | C05CRA05 | C05CRA15                        | C05CRA25  |  |
| Chiral | CelluCoat RP | 10                    | C10CRA05 | C10CRA15                        | C10CRA25  |  |
| Chiral | CelluCoat RP | 25                    | C25CRA05 | C25CRA15                        | C25CRA25  |  |

#### Kromasil Chiral, 10 mm i.d. columns

|        |              |                       | column size, i.d. × length [mm] |
|--------|--------------|-----------------------|---------------------------------|
| Family | Phase        | particle<br>size [µm] | 10 × 250                        |
| Chiral | AmyCoat      | 5                     | C05ACP25                        |
| Chiral | AmyCoat      | 10                    | C10ACP25                        |
| Chiral | AmyCoat      | 25                    | C25ACP25                        |
| Chiral | AmyCoat RP   | 5                     | C05ARP25                        |
| Chiral | AmyCoat RP   | 10                    | C10ARP25                        |
| Chiral | AmyCoat RP   | 25                    | C25ARP25                        |
| Chiral | CelluCoat    | 5                     | C05CCP25                        |
| Chiral | CelluCoat    | 10                    | C10CCP25                        |
| Chiral | CelluCoat    | 25                    | C25CCP25                        |
| Chiral | CelluCoat RP | 5                     | C05CRP25                        |
| Chiral | CelluCoat RP | 10                    | C10CRP25                        |
| Chiral | CelluCoat RP | 25                    | C25CRP25                        |



### Kromasil Chiral, 21.2 mm i.d. columns

|        |              |                       | column size, i.d. × length [mm] |            |  |
|--------|--------------|-----------------------|---------------------------------|------------|--|
| Family | Phase        | particle<br>size [µm] | 21.2 × 150                      | 21.2 × 250 |  |
| Chiral | AmyCoat      | 5                     | C05ACQ15                        | C05ACQ25   |  |
| Chiral | AmyCoat      | 10                    | C10ACQ15                        | C10ACQ25   |  |
| Chiral | AmyCoat      | 25                    | C25ACQ15                        | C25ACQ25   |  |
| Chiral | AmyCoat RP   | 5                     | C05ARQ15                        | C05ARQ25   |  |
| Chiral | AmyCoat RP   | 10                    | C10ARQ15                        | C10ARQ25   |  |
| Chiral | AmyCoat RP   | 25                    | C25ARQ15                        | C25ARQ25   |  |
| Chiral | CelluCoat    | 5                     | C05CCQ15                        | C05CCQ25   |  |
| Chiral | CelluCoat    | 10                    | C10CCQ15                        | C10CCQ25   |  |
| Chiral | CelluCoat    | 25                    | C25CCQ15                        | C25CCQ25   |  |
| Chiral | CelluCoat RP | 5                     | C05CRQ15                        | C05CRQ25   |  |
| Chiral | CelluCoat RP | 10                    | C10CRQ15                        | C10CRQ25   |  |
| Chiral | CelluCoat RP | 25                    | C25CRQ15                        | C25CRQ25   |  |

#### Kromasil Chiral, 30 mm i.d. columns

|        |              |                       | column size, i.d. × length [mm] |
|--------|--------------|-----------------------|---------------------------------|
| Family | Phase        | particle<br>size [µm] | 30 × 250                        |
| Chiral | AmyCoat      | 5                     | C05ACR25                        |
| Chiral | AmyCoat      | 10                    | C10ACR25                        |
| Chiral | AmyCoat      | 25                    | C25ACR25                        |
| Chiral | AmyCoat RP   | 5                     | C05ARR25                        |
| Chiral | AmyCoat RP   | 10                    | C10ARR25                        |
| Chiral | AmyCoat RP   | 25                    | C25ARR25                        |
| Chiral | CelluCoat    | 5                     | C05CCR25                        |
| Chiral | CelluCoat    | 10                    | C10CCR25                        |
| Chiral | CelluCoat    | 25                    | C25CCR25                        |
| Chiral | CelluCoat RP | 5                     | C05CRR25                        |
| Chiral | CelluCoat RP | 10                    | C10CRR25                        |
| Chiral | CelluCoat RP | 25                    | C25CRR25                        |

#### Kromasil Chiral, 50 mm i.d. columns

|        |              |                       | column size, i.d. × length [mm] |
|--------|--------------|-----------------------|---------------------------------|
| Family | Phase        | particle<br>size [µm] | 50 × 250                        |
| Chiral | AmyCoat      | 5                     | C05ACT25                        |
| Chiral | AmyCoat      | 10                    | C10ACT25                        |
| Chiral | AmyCoat      | 25                    | C25ACT25                        |
| Chiral | AmyCoat RP   | 5                     | C05ART25                        |
| Chiral | AmyCoat RP   | 10                    | C10ART25                        |
| Chiral | AmyCoat RP   | 25                    | C25ART25                        |
| Chiral | CelluCoat    | 5                     | C05CCT25                        |
| Chiral | CelluCoat    | 10                    | C10CCT25                        |
| Chiral | CelluCoat    | 25                    | C25CCT25                        |
| Chiral | CelluCoat RP | 5                     | C05CRT25                        |
| Chiral | CelluCoat RP | 10                    | C10CRT25                        |
| Chiral | CelluCoat RP | 25                    | C25CRT25                        |





# Kromasil SFC columns

#### Kromasil SFC, 3.0 mm i.d. columns

|        |       |                       | column size, i.d. × length [mm] |
|--------|-------|-----------------------|---------------------------------|
| Family | Phase | particle<br>size [µm] | 3.0 × 150                       |
| SFC    | CN    | 2.5                   | FH2CNC15                        |
| SFC    | Diol  | 2.5                   | FH2DIC15                        |
| SFC    | 2EP   | 2.5                   | FH2EPC15                        |
| SFC    | SIL   | 2.5                   | FH2SIC15                        |
| SFC    | KIT   | 2.5                   | FH2FKC15                        |

#### Kromasil SFC, 4.6 mm i.d. columns

|        |       |                       | column size, i.d. × length [mm] |
|--------|-------|-----------------------|---------------------------------|
| Family | Phase | particle<br>size [µm] | 4.6 × 150                       |
| SFC    | SIL   | 2.5                   | FH2SIA15                        |
| SFC    | Diol  | 2.5                   | FH2DIA15                        |
| SFC    | CN    | 2.5                   | FH2CNA15                        |
| SFC    | 2EP   | 2.5                   | FH2EPA15                        |

*KIT* is a 4 column kit for screening studies with one column of each 4 SFC phases in one box.

